9,240 research outputs found

    Herding cats: observing live coding in the wild

    Get PDF
    After a momentous decade of live coding activities, this paper seeks to explore the practice with the aim of situating it in the history of contemporary arts and music. The article introduces several key points of investigation in live coding research and discusses some examples of how live coding practitioners engage with these points in their system design and performances. In the light of the extremely diverse manifestations of live coding activities, the problem of defining the practice is discussed, and the question raised whether live coding will actually be necessary as an independent category

    Testing the self-duality of topological lumps in SU(3) lattice gauge theory

    Get PDF
    We discuss a simple formula which connects the field-strength tensor to a spectral sum over certain quadratic forms of the eigenvectors of the lattice Dirac operator. We analyze these terms for the near zero-modes and find that they give rise to contributions which are essentially either self-dual or anti self-dual. Modes with larger eigenvalues in the bulk of the spectrum are more dominated by quantum fluctuations and are less (anti) self-dual. In the high temperature phase of QCD we find considerably reduced (anti) self-duality for the modes near the edge of the spectral gap.Comment: Remarks added, to appear in Phys. Rev. Let

    Calorons, instantons and constituent monopoles in SU(3) lattice gauge theory

    Full text link
    We analyze the zero-modes of the Dirac operator in quenched SU(3) gauge configurations at non-zero temperature and compare periodic and anti-periodic temporal boundary conditions for the fermions. It is demonstrated that for the different boundary conditions often the modes are localized at different space-time points and have different sizes. Our observations are consistent with patterns expected for Kraan - van Baal solutions of the classical Yang-Mills equations. These solutions consist of constituent monopoles and the zero-modes are localized on different constituents for different boundary conditions. Our findings indicate that the excitations of the QCD vacuum are more structured than simple instanton-like lumps.Comment: Remarks added. To appear in Phys. Rev.

    Clustered bottlenecks in mRNA translation and protein synthesis

    Full text link
    We construct an algorithm that generates large, band-diagonal transition matrices for a totally asymmetric exclusion process (TASEP) with local hopping rate inhomogeneities. The matrices are diagonalized numerically to find steady-state currents of TASEPs with local variations in hopping rate. The results are then used to investigate clustering of slow codons along mRNA. Ribosome density profiles near neighboring clusters of slow codons interact, enhancing suppression of ribosome throughput when such bottlenecks are closely spaced. Increasing the slow codon cluster size, beyond ≈3−4\approx 3-4, does not significantly reduce ribosome current. Our results are verified by extensive Monte-Carlo simulations and provide a biologically-motivated explanation for the experimentally-observed clustering of low-usage codons

    Speed of ion trap quantum information processors

    Get PDF
    We investigate theoretically the speed limit of quantum gate operations for ion trap quantum information processors. The proposed methods use laser pulses for quantum gates which entangle the electronic and vibrational degrees of freedom of the trapped ions. Two of these methods are studied in detail and for both of them the speed is limited by a combination of the recoil frequency of the relevant electronic transition, and the vibrational frequency in the trap. We have experimentally studied the gate operations below and above this speed limit. In the latter case, the fidelity is reduced, in agreement with our theoretical findings. // Changes: a) error in equ. 24 and table III repaired b) reference Jonathan et al, quant-ph/ 0002092, added (proposes fast quantum gates using the AC-Stark effect)Comment: 10 pages, 4 figure

    A review of mission planning systems

    Get PDF
    A general definition of Mission Planning is given. The definition covers the full scope of an end-to-end mission planning system. Noting the mission-specific nature of most mission planning systems, a classification of autonomous spacecraft missions is made into Observatory, Survey, multi-instrument science, and Telecommunications missions. The mission planning approach for one mission in each category is examined critically. The following missions were chosen: ISO (Infrared Space Observatory); ERS-1 (European Remote Sensing Satellite); and Eureca (European Retrievable Carrier). The paper gives a summary of lessons learned from these missions suggesting improvements in areas such as requirements analysis, testing, user interfacing, rules, and constraints handling. The paper will also examine commonalities in functions, which could constitute a basis for identification of generic mission planning support tools

    Thermodynamics of quantum Heisenberg spin chains

    Full text link
    Thermodynamic properties of the quantum Heisenberg spin chains with S = 1/2, 1, and 3/2 are investigated using the transfer-matrix renormalization-group method. The temperature dependence of the magnetization, susceptibility, specific heat, spin-spin correlation length, and several other physical quantities in a zero or finite applied field are calculated and compared. Our data agree well with the Bethe ansatz, exact diagonalization, and quantum Monte Carlo results and provide further insight into the quantum effects in the antiferromagnetic Heisenberg spin chains.Comment: 9 pages, 10 figure

    Tunable few electron quantum dots in InAs nanowires

    Full text link
    Quantum dots realized in InAs are versatile systems to study the effect of spin-orbit interaction on the spin coherence, as well as the possibility to manipulate single spins using an electric field. We present transport measurements on quantum dots realized in InAs nanowires. Lithographically defined top-gates are used to locally deplete the nanowire and to form tunneling barriers. By using three gates, we can form either single quantum dots, or two quantum dots in series along the nanowire. Measurements of the stability diagrams for both cases show that this method is suitable for producing high quality quantum dots in InAs.Comment: 8 pages, 4 figure

    Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports

    Get PDF
    We demonstrate a new class of hollow-core Bragg fibers that are composed of concentric cylindrical silica rings separated by nanoscale support bridges. We theoretically predict and experimentally observe hollow-core confinement over an octave frequency range. The bandwidth of bandgap guiding in this new class of Bragg fibers exceeds that of other hollow-core fibers reported in the literature. With only three rings of silica cladding layers, these Bragg fibers achieve propagation loss of the order of 1 dB/m.Comment: 9 pages including 5 figure
    • 

    corecore