We analyze the zero-modes of the Dirac operator in quenched SU(3) gauge
configurations at non-zero temperature and compare periodic and anti-periodic
temporal boundary conditions for the fermions. It is demonstrated that for the
different boundary conditions often the modes are localized at different
space-time points and have different sizes. Our observations are consistent
with patterns expected for Kraan - van Baal solutions of the classical
Yang-Mills equations. These solutions consist of constituent monopoles and the
zero-modes are localized on different constituents for different boundary
conditions. Our findings indicate that the excitations of the QCD vacuum are
more structured than simple instanton-like lumps.Comment: Remarks added. To appear in Phys. Rev.