46,241 research outputs found

    Cosmological and Solar-System Tests of f(R) Modified Gravity

    Full text link
    We investigate the cosmological and the local tests of the f(R) theory of modified gravity via the observations of (1) the cosmic expansion and (2) the cosmic structures and via (3) the solar-system experiments. To fit the possible cosmic expansion histories under consideration, for each of them we reconstruct f(R), known as "designer f(R)". We then test the designer f(R) via the cosmic-structure constraints on the metric perturbation ratio Psi/Phi and the effective gravitational coupling G_eff and via the solar-system constraints on the Brans-Dicke theory with the chameleon mechanism. We find that among the designer f(R) models specified by the CPL effective equation of state w_eff, only the model closely mimicking general relativity with a cosmological constant (LambdaCDM) can survive all the tests. Accordingly, these tests rule out the frequently studied "w_eff = -1" designer f(R) models which are distinct in cosmic structures from LambdaCDM. When considering only the cosmological tests, we find that the surviving designer f(R) models, although exist for a variety of w_eff, entail fine-tuning.Comment: 22 pages, 9 figures, LaTe

    The 2-D magnetohydrostatic configurations leading to flares or quiescent filament eruptions

    Get PDF
    To investigate the cause of flares and quiescent filament eruptions the quasi-static evolution of a magnetohydrostatic (MHS) model was studied. The results lead to a proposal that: the sudden disruption of an active-region filament field configuration and the accompanying flare result from the lack of a neighboring equilibrium state as magnetic shear is increased above the critical value; and a quiescent filament eruption is due to an ideal MHD kink instability of a highly twisted detached flux tube formed by the increase of plasma current flowing along the length of the filament. A numerical solution was developed for the 2-D MHS equation for the self-consistent equilibrium of a filament and overlying coronal magnetic field. Increase of the poloidal current causes increase of magnetic shear. As shear increases past a critical point, there is a discontinuous topological change in the equilibrium configuration. It was proposed that the lack of a neighboring equilibrium triggers a flare. Increase of the axial current results in a detached tube with enough helical twist to be unstable to ideal MHD kink modes. It was proposed that this is the condition for the eruption of a quiescent filament

    Ku-band system design study and TDRSS interface analysis

    Get PDF
    The capabilities of the Shuttle/TDRSS link simulation program (LinCsim) were expanded to account for radio frequency interference (RFI) effects on the Shuttle S-band links, the channel models were updated to reflect the RFI related hardware changes, the ESTL hardware modeling of the TDRS communication payload was reviewed and evaluated, in LinCsim the Shuttle/TDRSS signal acquisition was modeled, LinCsim was upgraded, and possible Shuttle on-orbit navigation techniques was evaluated

    On the formation of coronal cavities

    Get PDF
    A theoretical study of the formation of a coronal cavity and its relation to a quiescent prominence is presented. It is argued that the formation of a cavity is initiated by the condensation of plasma which is trapped by the coronal magnetic field in a closed streamer and which then flows down to the chromosphere along the field lines due to lack of stable magnetic support against gravity. The existence of a coronal cavity depends on the coronal magnetic field strength; with low strength, the plasma density is not high enough for condensation to occur. Furthermore, we suggest that prominence and cavity material is supplied from the chromospheric level. Whether a coronal cavity and a prominence coexist depends on the magnetic field configuration; a prominence requires stable magnetic support

    Cluster Variation Approach to the Random-Anisotropy Blume-Emery-Griffiths Model

    Full text link
    The random--anisotropy Blume--Emery--Griffiths model, which has been proposed to describe the critical behavior of 3^3He--4^4He mixtures in a porous medium, is studied in the pair approximation of the cluster variation method extended to disordered systems. Several new features, with respect to mean field theory, are found, including a rich ground state, a nonzero percolation threshold, a reentrant coexistence curve and a miscibility gap on the high 3^3He concentration side down to zero temperature. Furthermore, nearest neighbor correlations are introduced in the random distribution of the anisotropy, which are shown to be responsible for the raising of the critical temperature with respect to the pure and uncorrelated random cases and contribute to the detachment of the coexistence curve from the λ\lambda line.Comment: 14 pages (plain TeX) + 12 figures (PostScript, appended), Preprint POLFIS-TH.02/9

    Resolving the pulsations of subdwarf B stars: HS 0039+4302, HS 0444+0458, and an examination of the group properties of resolved pulsators

    Full text link
    We continue our program of single-site observations of pulsating subdwarf B (sdB) stars and present the results of extensive time series photometry of HS 0039+4302 and HS 0444+0458. Both were observed at MDM Observatory during the fall of 2005. We extend the number of known frequencies for HS 0039+4302 from 4 to 14 and discover one additional frequency for HS 0444+0458, bringing the total to three. We perform standard tests to search for multiplet structure, measure amplitude variations, and examine the frequency density to constrain the mode degree ℓ\ell. Including the two stars in this paper, 23 pulsating sdB stars have received follow-up observations designed to decipher their pulsation spectra. It is worth an examination of what has been detected. We compare and contrast the frequency content in terms of richness and range and the amplitudes with regards to variability and diversity. We use this information to examine observational correlations with the proposed κ\kappa pulsation mechanism as well as alternative theories.Comment: 32 pages, 18 figures, 7 tables. Accepted for publication in MNRA

    Deformation and spallation of shocked Cu bicrystals with Σ3 coherent and symmetric incoherent twin boundaries

    Get PDF
    We perform molecular dynamics simulations of Cu bicrystals with two important grain boundaries (GBs), Σ3 coherent twin boundaries (CTB), and symmetric incoherent twin boundaries (SITB) under planar shock wave loading. It is revealed that the shock response (deformation and spallation) of the Cu bicrystals strongly depends on the GB characteristics. At the shock compression stage, elastic shock wave can readily trigger GB plasticity at SITB but not at CTB. The SITB can induce considerable wave attenuation such as the elastic precursor decay via activating GB dislocations. For example, our simulations of a Cu multilayer structure with 53 SITBs (∼1.5-μm thick) demonstrate a ∼80% elastic shock decay. At the tension stage, spallation tends to occur at CTB but not at SITB due to the high mobility of SITB. The SITB region transforms into a threefold twin via a sequential partial dislocation slip mechanism, while CTB preserves its integrity before spallation. In addition, deformation twinning is a mechanism for inducing surface step during shock tension stage. The drastically different shock response of CTB and SITB could in principle be exploited for, or benefit, interface engineering and materials design

    Left-right loading dependence of shock response of (111)//(112) Cu bicrystals: Deformation and spallation

    Get PDF
    We investigate with molecular dynamics the dynamic response of Cu bicrystals with a special asymmetric grain boundary (GB), (111)//(112)〈110〉, and its dependence on the loading directions. Shock loading is applied along the GB normal either from the left or right to the GB. Due to the structure asymmetry, the bicrystals demonstrate overall strong left-right loading dependence of its shock response, including compression wave features, compression and tensile plasticity, damage characteristics (e.g., spall strength), effective wave speeds and structure changes, except that spallation remains dominated by the GB damage regardless of the loading directions. The presence or absence of transient microtwinning also depends on the loading directions
    • …
    corecore