72 research outputs found
Position controlled self-catalyzed growth of GaAs nanowires by molecular beam epitaxy
GaAs nanowires are grown by molecular beam epitaxy using a self-catalyzed,
Ga-assisted growth technique. Position control is achieved by nano-patterning a
SiO2 layer with arrays of holes with a hole diameter of 85 nm and a hole pitch
varying between 200 nm and 2 \mum. Gallium droplets form preferentially at the
etched holes acting as catalyst for the nanowire growth. The nanowires have
hexagonal cross-sections with {110} side facets and crystallize predominantly
in zincblende. The interdistance dependence of the nanowire growth rate
indicates a change of the III/V ratio towards As-rich conditions for large hole
distances inhibiting NW growth.Comment: 9 pages, 4 figure
Coulomb effects in tunneling through a quantum dot stack
Tunneling through two vertically coupled quantum dots is studied by means of
a Pauli master equation model. The observation of double peaks in the
current-voltage characteristic in a recent experiment is analyzed in terms of
the tunnel coupling between the quantum dots and the coupling to the contacts.
Different regimes for the emitter chemical potential indicating different peak
scenarios in the tunneling current are discussed in detail. We show by
comparison with a density matrix approach that the interplay of coherent and
incoherent effects in the stationary current can be fully described by this
approach.Comment: 6 pages, 6 figure
Tunable few electron quantum dots in InAs nanowires
Quantum dots realized in InAs are versatile systems to study the effect of
spin-orbit interaction on the spin coherence, as well as the possibility to
manipulate single spins using an electric field. We present transport
measurements on quantum dots realized in InAs nanowires. Lithographically
defined top-gates are used to locally deplete the nanowire and to form
tunneling barriers. By using three gates, we can form either single quantum
dots, or two quantum dots in series along the nanowire. Measurements of the
stability diagrams for both cases show that this method is suitable for
producing high quality quantum dots in InAs.Comment: 8 pages, 4 figure
Strong tuning of Rashba spin orbit interaction in single InAs nanowires
A key concept in the emerging field of spintronics is the gate voltage or
electric field control of spin precession via the effective magnetic field
generated by the Rashba spin orbit interaction. Here, we demonstrate the
generation and tuning of electric field induced Rashba spin orbit interaction
in InAs nanowires where a strong electric field is created either by a double
gate or a solid electrolyte surrounding gate. In particular, the electrolyte
gating enables six-fold tuning of Rashba coefficient and nearly three orders of
magnitude tuning of spin relaxation time within only 1 V of gate bias. Such a
dramatic tuning of spin orbit interaction in nanowires may have implications in
nanowire based spintronic devices.Comment: Nano Letters, in pres
Ultrathin compound semiconductor on insulator layers for high performance nanoscale transistors
Over the past several years, the inherent scaling limitations of electron
devices have fueled the exploration of high carrier mobility semiconductors as
a Si replacement to further enhance the device performance. In particular,
compound semiconductors heterogeneously integrated on Si substrates have been
actively studied, combining the high mobility of III-V semiconductors and the
well-established, low cost processing of Si technology. This integration,
however, presents significant challenges. Conventionally, heteroepitaxial
growth of complex multilayers on Si has been explored. Besides complexity, high
defect densities and junction leakage currents present limitations in the
approach. Motivated by this challenge, here we utilize an epitaxial transfer
method for the integration of ultrathin layers of single-crystalline InAs on
Si/SiO2 substrates. As a parallel to silicon-on-insulator (SOI) technology14,we
use the abbreviation "XOI" to represent our compound semiconductor-on-insulator
platform. Through experiments and simulation, the electrical properties of InAs
XOI transistors are explored, elucidating the critical role of quantum
confinement in the transport properties of ultrathin XOI layers. Importantly, a
high quality InAs/dielectric interface is obtained by the use of a novel
thermally grown interfacial InAsOx layer (~1 nm thick). The fabricated FETs
exhibit an impressive peak transconductance of ~1.6 mS/{\mu}m at VDS=0.5V with
ON/OFF current ratio of greater than 10,000 and a subthreshold swing of 107-150
mV/decade for a channel length of ~0.5 {\mu}m
One-dimensional Weak Localization of Electrons in a Single InAs Nanowire
We report on low temperature (2-30K) electron transport and magneto-transport
measurements of a chemically synthesized InAs nanowire. Both the temperature,
T, and transverse magnetic field dependences of the nanowire conductance are
consistent with the functional forms predicted in one-dimensional (1D) weak
localization theory. By fitting the magneto-conductance data to theory, the
phase coherence length of electrons is determined to be tens of nanometers with
a T-1/3 dependence. Moreover, as the electron density is increased by a gate
voltage, the magneto-conductance shows a possible signature of suppression of
weak localization in multiple 1D subbands
A 220 GHz 3D imaging radar with sub-cm<sup>3</sup> voxel resolution for security applications
Radars operating at high millimetre and sub-millimetre wave frequencies are promising candidates for security applications such as people screening since they offer the possibility to form 3D images through clothing with sufficient resolution to detect concealed objects. High spatial resolution of order 1 cm can be achieved using practically sized antennas and high range resolution can be achieved using wideband FMCW chirps, e.g. 30 GHz, to yield 0.5 cm range bins. We present a 220 GHz test-bed 'Pathfinder' radar which achieves sub-cm3 voxel resolution with very high signal fidelity. The radar is used to derisk technology under development for next generation people screening systems
- …