384 research outputs found

    On-line Tools for Solar Data Compiled at the Debrecen Observatory and their Extensions with the Greenwich Sunspot Data

    Get PDF
    The primary task of the Debrecen Heliophysical Observatory (DHO) has been the most detailed, reliable, and precise documentation of the solar photospheric activity since 1958. This long-term effort resulted in various solar catalogs based on ground-based and space-borne observations. A series of sunspot databases and on-line tools were compiled at DHO: the Debrecen Photoheliographic Data (DPD, 1974--), the dataset based on the Michelson Doppler Imager (MDI) of the Solar and Heliospheric Observatory (SOHO) called SOHO/MDI--Debrecen Data (SDD, 1996--2010), and the dataset based on the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO) called SDO/HMI--Debrecen Data (HMIDD, 2010--). User-friendly web-presentations and on-line tools were developed to visualize and search data. As a last step of compilation, the revised version of Greenwich Photoheliographic Results (GPR, 1874--1976) catalog was converted to DPD format, and a homogeneous sunspot database covering more than 140 years was created. The database of images for the GPR era was completed with the full-disc drawings of the Hungarian historical observatories \'Ogyalla and Kalocsa (1872--1919) and with the polarity drawings of Mount Wilson Observatory. We describe the main characteristics of the available data and on-line tools.Comment: 25 pages, 11 figures, accepted for publication in Solar Physic

    Active Longitude and Solar Flare Occurrences

    Get PDF
    The aim of the present work is to specify the spatio-temporal characteristics of flare activity observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Geostationary Operational Environmental Satellite (GOES) satellites in connection with the behaviour of the longitudinal domain of enhanced sunspot activity known as active longitude (AL). By using our method developed for this purpose, we identified the AL in every Carrington Rotation provided by the Debrecen Photoheliographic Data (DPD). The spatial probability of flare occurrence has been estimated depending on the longitudinal distance from AL in the northern and southern hemispheres separately. We have found that more than the 60\% of the RHESSI and GOES flares is located within ±36∘\pm 36^{\circ} from the active longitude. Hence, the most flare-productive active regions tend to be located in or close to the active longitudinal belt. This observed feature may allow predicting the geo-effective position of the domain of enhanced flaring probability. Furthermore, we studied the temporal properties of flare occurrence near the active longitude and several significant fluctuations were found. More precisely, the results of the method are the following fluctuations: 0.80.8 years, 1.31.3 years and 1.81.8 years. These temporal and spatial properties of the solar flare occurrence within the active longitudinal belts could provide us enhanced solar flare forecasting opportunity

    Statistical study of spatio-temporal distribution of precursor solar flares associated with major flares

    Get PDF
    The aim of the present investigation is to study the spatio-temporal distribution of precursor flares during the 24-hour interval preceding M- and X-class major flares and the evolution of follower flares. Information on associated (precursor and follower) flares is provided by Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Flare List, while the major flares are observed by the Geostationary Operational Environmental Satellite (GOES) system satellites between 2002 and 2014. There are distinct evolutionary differences between the spatio-temporal distributions of associated flares in about one day period depending on the type of the main flare. The spatial distribution was characterised by the normalised frequency distribution of the quantity δ\delta (the distance between the major flare and its precursor flare normalised by the sunspot group diameter) in four 6-hour time intervals before the major event. The precursors of X-class flares have a double-peaked spatial distribution for more than half a day prior to the major flare, but it changes to a lognormal-like distribution roughly 6 hours prior to the event. The precursors of M-class flares show lognormal-like distribution in each 6-hour subinterval. The most frequent sites of the precursors in the active region are within a distance of about 0.1 diameter of sunspot group from the site of the major flare in each case. Our investigation shows that the build-up of energy is more effective than the release of energy because of precursors

    Comparison of Debrecen and Mount Wilson/Kodaikanal sunspot group tilt angles and the Joy's law

    Get PDF
    The study of active region tilt angles and their variations in different time scales plays an important role in revealing the subsurface dynamics of magnetic flux ropes and in understanding the dynamo mechanism. In order to reveal the exact characteristics of tilt angles, precise long-term tilt angle data bases are needed. However, there are only a few different data sets at present, which are difficult to be compared and cross-calibrate because of their substantial deviations. In this paper, we describe new tilt angle data bases derived from the Debrecen Photoheliographic Data (DPDDPD) (1974--) and from the SOHO/MDI-Debrecen Data (SDDSDD) (1996-2010) sunspot catalogues. We compare them with the traditional sunspot group tilt angle data bases of Mount Wilson Observatory (1917-85) and Kodaikanal Solar Observatory (1906-87) and we analyse the deviations. Various methods and filters are investigated which may improve the sample of data and may help deriving better results based on combined data. As a demonstration of the enhanced quality of the improved data set a refined diagram of the Joy's law is presented.Comment: 10 pages, 12 figures, Accepted for publication in MNRA

    Active-Region Tilt Angles: Magnetic Versus White-Light Determinations of Joy's Law

    Get PDF
    The axes of solar active regions are inclined relative to the east--west direction, with the tilt angle tending to increase with latitude ("Joy's law"). Observational determinations of Joy's law have been based either on white-light images of sunspot groups or on magnetograms, where the latter have the advantage of measuring directly the physically relevant quantity (the photospheric field), but the disadvantage of having been recorded routinely only since the mid-1960s. White-light studies employing the historical Mount Wilson (MW) database have yielded tilt angles that are smaller and that increase less steeply with latitude than those obtained from magnetic data. We confirm this effect by comparing sunspot-group tilt angles from the Debrecen Photoheliographic Database with measurements made by Li and Ulrich using MW magnetograms taken during cycles 21--23. Whether white-light or magnetic data are employed, the median tilt angles significantly exceed the mean values, and provide a better characterization of the observed distributions. The discrepancy between the white-light and magnetic results is found to have two main sources. First, a substantial fraction of the white-light "tilt angles" refer to sunspots of the same polarity. Of greater physical significance is that the magnetograph measurements include the contribution of plage areas, which are invisible in white-light images but tend to have greater axial inclinations than the adjacent sunspots. Given the large uncertainties inherent in both the white-light and the magnetic measurements, it remains unclear whether any systematic relationship exists between tilt angle and cycle amplitude during cycles 16--23.Comment: 35 pages, 13 figures, Accepted in Ap

    Research for policy influence : a history of IDRC intent

    Get PDF
    Part of the collection of government and miscellaneous documents relating to the history of IDRC.This paper tells the story of how the Centre's intent on linking research and policy processes has evolved over the years. There has been a persistent concern with the use of research over three decades of IDRC’s history. The task of refining a corporate strategy to foster research for policy change, and especially of putting it into practice, remains a work in progress. This study is based on analysis of IDRC planning documents, reports, internal papers, evaluations and reviews, as well as selected Board minutes. External documents were also consulted to help provide context
    • …
    corecore