125 research outputs found

    Quantum isometries and noncommutative spheres

    Full text link
    We introduce and study two new examples of noncommutative spheres: the half-liberated sphere, and the free sphere. Together with the usual sphere, these two spheres have the property that the corresponding quantum isometry group is "easy", in the representation theory sense. We present as well some general comments on the axiomatization problem, and on the "untwisted" and "non-easy" case.Comment: 16 page

    Quantum Symmetries and Strong Haagerup Inequalities

    Full text link
    In this paper, we consider families of operators {xr}rΛ\{x_r\}_{r \in \Lambda} in a tracial C^\ast-probability space (A,ϕ)(\mathcal A, \phi), whose joint \ast-distribution is invariant under free complexification and the action of the hyperoctahedral quantum groups {Hn+}nN\{H_n^+\}_{n \in \N}. We prove a strong form of Haagerup's inequality for the non-self-adjoint operator algebra B\mathcal B generated by {xr}rΛ\{x_r\}_{r \in \Lambda}, which generalizes the strong Haagerup inequalities for \ast-free R-diagonal families obtained by Kemp-Speicher \cite{KeSp}. As an application of our result, we show that B\mathcal B always has the metric approximation property (MAP). We also apply our techniques to study the reduced C^\ast-algebra of the free unitary quantum group Un+U_n^+. We show that the non-self-adjoint subalgebra Bn\mathcal B_n generated by the matrix elements of the fundamental corepresentation of Un+U_n^+ has the MAP. Additionally, we prove a strong Haagerup inequality for Bn\mathcal B_n, which improves on the estimates given by Vergnioux's property RD \cite{Ve}

    Spectral analysis of the free orthogonal matrix

    Get PDF
    We compute the spectral measure of the standard generators uiju_{ij} of the Wang algebra Ao(n)A_o(n). We show in particular that this measure has support [2/n+2,2/n+2][-2/\sqrt{n+2},2/\sqrt{n+2}], and that it has no atoms. The computation is done by using various techniques, involving the general Wang algebra Ao(F)A_o(F), a representation of SU2qSU^q_2 due to Woronowicz, and several calculations with orthogonal polynomials.Comment: 22 pages, 4 figure

    A maximality result for orthogonal quantum groups

    Full text link
    We prove that the quantum group inclusion OnOnO_n \subset O_n^* is "maximal", where OnO_n is the usual orthogonal group and OnO_n^* is the half-liberated orthogonal quantum group, in the sense that there is no intermediate compact quantum group OnGOnO_n\subset G\subset O_n^*. In order to prove this result, we use: (1) the isomorphism of projective versions POnPUnPO_n^*\simeq PU_n, (2) some maximality results for classical groups, obtained by using Lie algebras and some matrix tricks, and (3) a short five lemma for cosemisimple Hopf algebras.Comment: 10 page

    Quantum isometries of noncommutative polygonal spheres

    Full text link

    Induction of Kanizsa Contours Requires Awareness of the Inducing Context

    Get PDF
    It remains unknown to what extent the human visual system interprets information about complex scenes without conscious analysis. Here we used visual masking techniques to assess whether illusory contours (Kanizsa shapes) are perceived when the inducing context creating this illusion does not reach awareness. In the first experiment we tested perception directly by having participants discriminate the orientation of an illusory contour. In the second experiment, we exploited the fact that the presence of an illusory contour enhances performance on a spatial localization task. Moreover, in the latter experiment we also used a different masking method to rule out the effect of stimulus duration. Our results suggest that participants do not perceive illusory contours when they are unaware of the inducing context. This is consistent with theories of a multistage, recurrent process of perceptual integration. Our findings thus challenge some reports, including those from neurophysiological experiments in anaesthetized animals. Furthermore, we discuss the importance to test the presence of the phenomenal percept directly with appropriate methods

    Stability of the selfsimilar dynamics of a vortex filament

    Full text link
    In this paper we continue our investigation about selfsimilar solutions of the vortex filament equation, also known as the binormal flow (BF) or the localized induction equation (LIE). Our main result is the stability of the selfsimilar dynamics of small pertubations of a given selfsimilar solution. The proof relies on finding precise asymptotics in space and time for the tangent and the normal vectors of the perturbations. A main ingredient in the proof is the control of the evolution of weighted norms for a cubic 1-D Schr\"odinger equation, connected to the binormal flow by Hasimoto's transform.Comment: revised version, 36 page

    Quantum Isometries of the finite noncommutative geometry of the Standard Model

    Full text link
    We compute the quantum isometry group of the finite noncommutative geometry F describing the internal degrees of freedom in the Standard Model of particle physics. We show that this provides genuine quantum symmetries of the spectral triple corresponding to M x F where M is a compact spin manifold. We also prove that the bosonic and fermionic part of the spectral action are preserved by these symmetries.Comment: 29 pages, no figures v3: minor change

    Minimal blow-up solutions to the mass-critical inhomogeneous NLS equation

    Full text link
    We consider the mass-critical focusing nonlinear Schrodinger equation in the presence of an external potential, when the nonlinearity is inhomogeneous. We show that if the inhomogeneous factor in front of the nonlinearity is sufficiently flat at a critical point, then there exists a solution which blows up in finite time with the maximal (unstable) rate at this point. In the case where the critical point is a maximum, this solution has minimal mass among the blow-up solutions. As a corollary, we also obtain unstable blow-up solutions of the mass-critical Schrodinger equation on some surfaces. The proof is based on properties of the linearized operator around the ground state, and on a full use of the invariances of the equation with an homogeneous nonlinearity and no potential, via time-dependent modulations.Comment: 36 pages. More explanations, references updated, statement of Theorem 1.1 corrected. FInal versio
    corecore