6 research outputs found
A comparison of observed and modelled deviations from the great circle direction for a 4490 km HF propagation path along the midlatitude ionospheric trough
Measurements of the direction-of-arrival of signals propagating on a long (4490 km) path along the midlatitude trough show that the azimuth can be deviated by up to 100° from the great circle bearing. In this paper an attempt has been made to model the shift in azimuth through a ray tracing simulation. Two possible mechanisms which lead to changes in azimuth have been investigated: (1) propagation along the density gradients which form the equatorward wall of the trough and (2) side scatter from regions of the sea well to the south of the trough. Of these two mechanisms, sea scatter gives results which are much closer to those observed
ULF wave occurrence statistics in a high-latitude HF Doppler sounder
Ultra low frequency (ULF) wave activity in the high-latitude ionosphere has been observed by a high frequency (HF) Doppler sounder located at Tromsø, Norway (69.7°N, 19.2°E geographic coordinates). A statistical study of the occurrence of these waves has been undertaken from data collected between 1979 and 1984. The diurnal, seasonal, solar cycle and geomagnetic activity variations in occurrence have been investigated. The findings demonstrate that the ability of the sounder to detect ULF wave signatures maximises at the equinoxes and that there is a peak in occurrence in the morning sector. The occurrence rate is fairly insensitive to changes associated with the solar cycle but increases with the level of geomagnetic activity. As a result, it has been possible to characterise the way in which prevailing ionospheric and magnetospheric conditions affect such observations of ULF waves
The synthesis of travelling ionospheric disturbance (TID) signatures in HF radar observations using ray tracing
Characteristic signatures are often observed in HF radar range-time-intensity plots when travelling ionospheric disturbances (TIDs) are present. These signatures, in particular the variation of the F-region skip distance, have been synthesised using a ray tracing model. The magnitude of the skip variation is found to be a function of the peak electron density perturbation associated with the TID and radar frequency. Examination of experimental observations leads to an estimate of the peak electron density perturbation amplitude of around 25% for those TIDs observed by the CUTLASS radar system. The advantage of using the skip variation over the radar return amplitude as an indicator of density perturbation is also discussed. An example of a dual radar frequency experiment has been given. The investigation of the effect of radar frequency on the observations will aid the optimisation of future experiments
Interferometric evidence for the observation of ground backscatter originating behind the CUTLASS coherent HF radars
Interferometric techniques allow the SuperDARN coherent HF radars to determine the elevation angles of returned backscatter, giving information on the altitude of the scatter volume, in the case of ionospheric backscatter, or the reflection altitude, in the case of ground backscatter. Assumptions have to be made in the determination of elevation angles, including the direction of arrival, or azimuth, of the returned signals, usually taken to be the forward look-direction (north) of the radars, specified by the phasing of the antenna arrays. It is shown that this assumption is not always valid in the case of ground backscatter, and that significant returns can be detected from the backward look-direction of the radars. The response of the interferometer to backscatter from behind the radar is modelled and compared with observations. It is found that ground backscatter from a field-of-view that is the mirror image of the forward-looking field-of-view is a common feature of the observations, and this interpretation successfully explains several anomalies in the received backscatter
Initial backscatter occurrence statistics from the CUTLASS HF radars
A statistical study of the occurrence of ground and ionospheric backscatter within the fields-of-view of the CUTLASS HF radars, at an operating frequency of 10 MHz, during the first 20 months of operation has been undertaken. The diurnal variation of the occurrence of backscatter and the range at which such backscatter is observed is found to be highly dependent on seasonal changes of the ionospheric electron density in both the E and F region, determined from ionosonde observations. In general, ionospheric backscatter is observed at far ranges during the local day in winter months and at near ranges during the local night in summer months. The Iceland radar observes more near-range E region backscatter than the Finland radar as a consequence of its more zonal look-direction. The dependence of the occurrence of backscatter on geomagnetic activity and radar operating frequency are also investigated. The occurrence of ground and ionospheric backscatter is discussed in terms of HF propagation modes and ionospheric electron densities as well as geophysical processes. A brief assessment of the possible impact of solar cycle variations on the observations is made and frequency management is discussed. Such a study, with its focus on the `instrumental' aspect of backscatter occurrence, is essential for a full interpretation of HF coherent radar observations
SuperDARN studies of the ionospheric convection response to a northward turning of the interplanetary magnetic field
The response of the dayside ionospheric flow to a sharp change in the direction of the interplanetary magnetic field (IMF) measured by the WIND spacecraft from negative Bz and positive By, to positive Bz and small By, has been studied using SuperDARN radar, DMSP satellite, and ground magnetometer data. In response to the IMF change, the flow underwent a transition from a distorted twin-cell flow involving antisunward flow over the polar cap, to a multi-cell flow involving a region of sunward flow at high latitudes near noon. The radar data have been studied at the highest time resolution available (~2 min) to determine how this transition took place. It is found that the dayside flow responded promptly to the change in the IMF, with changes in radar and magnetic data starting within a few minutes of the estimated time at which the effects could first have reached the dayside ionosphere. The data also indicate that sunward flows appeared promptly at the start of the flow change (within ~2 min), localised initially in a small region near noon at the equatorward edge of the radar backscatter band. Subsequently the region occupied by these flows expanded rapidly east-west and poleward, over intervals of ~7 and ~14 min respectively, to cover a region at least 2 h wide in local time and 5° in latitude, before rapid evolution ceased in the noon sector. In the lower latitude dusk sector the evolution extended for a further ~6 min before quasi-steady conditions again prevailed within the field-of-view. Overall, these observations are shown to be in close conformity with expectations based on prior theoretical discussion, except for the very prompt appearance of sunward flows after the onset of the flow change