323 research outputs found

    Coordinate transformations for characterization and cluster analysis of spatial configurations in football

    Get PDF
    Current technologies allow movements of the players and the ball in football matches to be tracked and recorded with high accuracy and temporal frequency. We demonstrate an approach to analyzing football data with the aim to find typical patterns of spatial arrangement of the field players. It involves transformation of original coordinates to relative positions of the players and the ball with respect to the center and attack vector of each team. From these relative positions, we derive features for characterizing spatial configurations in different time steps during a football game. We apply clustering to these features, which groups the spatial configurations by similarity. By summarizing groups of similar configurations, we obtain representation of spatial arrangement patterns practiced by each team. The patterns are represented visually by density maps built in the teams’ relative coordinate systems. Using additional displays, we can investigate under what conditions each pattern was applied

    MobilityGraphs: Visual Analysis of Mass Mobility Dynamics via Spatio-Temporal Graphs and Clustering

    Get PDF
    Learning more about people mobility is an important task for official decision makers and urban planners. Mobility data sets characterize the variation of the presence of people in different places over time as well as movements (or flows) of people between the places. The analysis of mobility data is challenging due to the need to analyze and compare spatial situations (i.e., presence and flows of people at certain time moments) and to gain an understanding of the spatio-temporal changes (variations of situations over time). Traditional flow visualizations usually fail due to massive clutter. Modern approaches offer limited support for investigating the complex variation of the movements over longer time periods

    Visual Analysis of Pressure in Football

    Get PDF
    Modern movement tracking technologies enable acquisition of high quality data about movements of the players and the ball in the course of a football match. However, there is a big difference between the raw data and the insights into team behaviors that analysts would like to gain. To enable such insights, it is necessary first to establish relationships between the concepts characterizing behaviors and what can be extracted from data. This task is challenging since the concepts are not strictly defined. We propose a computational approach to detecting and quantifying the relationships of pressure emerging during a game. Pressure is exerted by defending players upon the ball and the opponents. Pressing behavior of a team consists of multiple instances of pressure exerted by the team members. The extracted pressure relationships can be analyzed in detailed and summarized forms with the use of static and dynamic visualizations and interactive query tools. To support examination of team tactics in different situations, we have designed and implemented a novel interactive visual tool “time mask”. It enables selection of multiple disjoint time intervals in which given conditions are fulfilled. Thus, it is possible to select game situations according to ball possession, ball distance to the goal, time that has passed since the last ball possession change or remaining time before the next change, density of players’ positions, or various other conditions. In response to a query, the analyst receives visual and statistical summaries of the set of selected situations and can thus perform joint analysis of these situations. We give examples of applying the proposed combination of computational, visual, and interactive techniques to real data from games in the German Bundesliga, where the teams actively used pressing in their defense tactics

    Liquid crystal director fluctuations and surface anchoring by molecular simulation

    Full text link
    We propose a simple and reliable method to measure the liquid crystal surface anchoring strength by molecular simulation. The method is based on the measurement of the long-range fluctuation modes of the director in confined geometry. As an example, molecular simulations of a liquid crystal in slab geometry between parallel walls with homeotropic anchoring have been carried out using the Monte Carlo technique. By studying different slab thicknesses, we are able to calculate separately the position of the elastic boundary condition, and the extrapolation length

    Designing visual analytics methods for massive collections of movement data

    Get PDF
    Exploration and analysis of large data sets cannot be carried out using purely visual means but require the involvement of database technologies, computerized data processing, and computational analysis methods. An appropriate combination of these technologies and methods with visualization may facilitate synergetic work of computer and human whereby the unique capabilities of each “partner” can be utilized. We suggest a systematic approach to defining what methods and techniques, and what ways of linking them, can appropriately support such a work. The main idea is that software tools prepare and visualize the data so that the human analyst can detect various types of patterns by looking at the visual displays. To facilitate the detection of patterns, we must understand what types of patterns may exist in the data (or, more exactly, in the underlying phenomenon). This study focuses on data describing movements of multiple discrete entities that change their positions in space while preserving their integrity and identity. We define the possible types of patterns in such movement data on the basis of an abstract model of the data as a mathematical function that maps entities and times onto spatial positions. Then, we look for data transformations, computations, and visualization techniques that can facilitate the detection of these types of patterns and are suitable for very large data sets – possibly too large for a computer's memory. Under such constraints, visualization is applied to data that have previously been aggregated and generalized by means of database operations and/or computational techniques
    • …
    corecore