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Designing Visual Analytics Methods for Massive
Collections of Movement Data

Natalia Andrienko and Gennady Andrienko
Fraunhofer Institute IAIS / Schloss Birlinghoven / Germany

Abstract

Exploration and analysis of large data sets cannot be carried out using purely visual means but require the involvement of
database technologies, computerized data processing, and computational analysis methods. An appropriate combination
of these technologies and methods with visualization may facilitate synergetic work of computer and human whereby the
unique capabilities of each ‘‘partner’’ can be utilized. We suggest a systematic approach to defining what methods and
techniques, and what ways of linking them, can appropriately support such a work. The main idea is that software tools
prepare and visualize the data so that the human analyst can detect various types of patterns by looking at the visual
displays. To facilitate the detection of patterns, we must understand what types of patterns may exist in the data (or, more
exactly, in the underlying phenomenon). This study focuses on data describing movements of multiple discrete entities
that change their positions in space while preserving their integrity and identity. We define the possible types of patterns
in such movement data on the basis of an abstract model of the data as a mathematical function that maps entities and
times onto spatial positions. Then, we look for data transformations, computations, and visualization techniques that can
facilitate the detection of these types of patterns and are suitable for very large data sets – possibly too large fora
computer’s memory. Under such constraints, visualization is applied to data that have previously been aggregated and
generalized by means of database operations and/or computational techniques.

Keywords: geovisualization, visual analytics, aggregation, data mining, movement data

Résumé

L’exploration et l’analyse de larges ensembles de données ne peuvent pas s’effectuer seulement avec des moyens visuels.
Elles nécessitent l’emploi de technologies sur les bases de données, le traitement informatisé des données et le recours à
des méthodes d’analyse informatique. Ces technologies et ces méthodes, associées à la visualisation, facilitent le travail
synergique de l’ordinateur et de l’humain, qui repose sur les capacités uniques de chaque « partenaire ». Nous suggérons
une démarche systématique pour déterminer les méthodes et les techniques appropriées, et établir un lien entre elles, afin
de faciliter ce travail. Les outils informatiques devraient servir à préparer et à visualiser les données de manière à ce que
l’analyste humain puisse détecter des types de séquences en les examinant. Pour faciliter cette détection, il faut
comprendre quels types de séquences se trouvent dans les données (ou, plus précisément, dans les phénomènes sous-
jacents). L’étude porte sur des données décrivant les mouvements de multiples entités discrètes qui changent de position
dans l’espace tout en préservant leur intégrité et leur identité. Nous déterminons les types de séquences possibles dans ces
données, en nous basant sur un modèle abstrait de fonction mathématique qui reflète les entités et le temps dans des
positions spatiales. Puis, nous examinons des techniques de transformation, de calcul et de visualisation des données qui
peuvent faciliter la détection des séquences et sont utiles pour de très grands ensembles de données – probablement trop
grands pour la mémoire d’un ordinateur. En présence de telles contraintes, on se sert de techniques informatiques ou
d’opérations sur les bases de données pour regrouper et généraliser les ensembles de données.

Mots clés : géovisualisation, analyse visuelle, regroupement, exploration des données, données du mouvement
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Introduction

It is commonly recognized that interactive and dynamic

visual representations are essential for understanding

spatial and spatiotemporal data and underlying phenom-

ena. However, visualizations alone may be insufficient

when massive data collections need to be explored and

analysed. This is not only a matter of technical limitations,

such as screen size and resolution or speed of rendering,

but also a question of the natural perceptual and cognitive

limitations of the humans who need to view and interpret

the visual displays. Hence, there is a need to combine

visualization with computational analysis methods, data-

base queries, data transformations, and other computer-

based operations. The goal is to create visual analytics

environments in which humans and computers can work

in synergy to solve complex problems, whereby the

computational power amplifies human capabilities such

as pattern recognition, imagination, association, and

analytical reasoning and is, in turn, directed by the

human user’s background knowledge and insights gained.

This goal closely corresponds to the definition of visual

analytics (Thomas and Cook 2005).

The present study focuses on massive movement data and,

more specifically, data about multiple discrete entities

changing their spatial positions over time while preserving

their integrity and identity (i.e., the entities do not split or

merge). Such data present an appropriate target for

human–computer synergy. On the one hand, purely

computational methods of analysis are insufficient

because they operate with numbers and symbols, which

cannot adequately represent a continuous two- or three-

dimensional space with its heterogeneity and the multi-

tude of spatial relations. On the other hand, purely visual

methods fail when data reflect the movements of many

entities and/or refer to many time points. Even two

trajectories represented on a map or in a space–time cube

may be difficult to analyse if they have common locations

or segments (or even a single long trajectory with loops or

repeated segments), and a display of 10 trajectories may

be completely illegible. Moreover, real-life problems may

generate data sets that do not fit into the computer’s

memory.

The aim of this article is to define a set of visual analytics

tools suitable for massive collections of movement data.

To do this in a systematic manner, we begin by

considering the structure and properties of movement

data and identifying the characteristics and aspects that

require analysis. On this basis, we define potentially

significant types of patterns that an analyst may be

interested to detect and investigate. Next we try to

discover what kind of tool could support the detection

and investigation of each pattern type. Wherever the

existing techniques and approaches are insufficient, we try

to infer what would be suitable.

Prior to presenting our study, we review related work on

the visualization and analysis of movement data. Since

our target is massive movement data, we have limited the

scope of our review to work addressing movements of

multiple entities or very long movement trajectories of

single entities. We omit those techniques and approaches
based on visual representation of individual movement

data.

Related Works

Most techniques and tools designed for visual examina-

tion of large collections of movement data involve data

aggregation. Another approach is filtering, whereby only
data subsets satisfying user’s queries are visualized. Both

aggregation and filtering are intended to reduce the data

set to a manageable size.

A series of papers written by David Mountain and others

describes several techniques suggested to support the
investigation of very long movement trajectories of single

entities (Mountain and Raper 2001; Mountain and Dykes

2002; Dykes and Mountain 2003; Mountain 2005a,

2005b). One of these techniques is the temporal

histogram, which represents the data aggregated by time

intervals, for example, the number of locations visited or

the distance travelled. The data can also be aggregated

spatially by imposing a regular grid over the territory and
counting the trajectory points fitting in each cell. The

resulting densities are visually represented by colouring or

shading the grid cells on a map display. The densities

counted for consecutive time intervals can be shown on

an animated map display. A grid with densities can be

treated as a surface, which may contain various features

such as peaks (maxima), pits (minima), channels (linear

minima), ridges (linear maxima), and saddles (channels
crossing ridges). There are computational methods for

detecting such features, which can then be visualized on

a map.

By analogy to density surfaces, it is possible to build

surfaces representing other movement-related character-

istics. An isochrone surface is a series of concentric
polygons, centred on a selected location, representing

the areas accessible from this location within specified

‘‘time budgets’’ (e.g., 3 minutes, 6 minutes, 9 minutes,

etc.). An accessibility surface is a grid wherein each cell

represents the travel time from the selected location.

Besides the techniques involving aggregation and compu-

tations, Mountain and others describe tools for spatial,

temporal, and attribute filtering.

In fact, the techniques that Mountain and others applied

to long trajectories of a single entity are also applicable to

trajectories of multiple entities. Thus, Pip Forer and Otto

Huisman (2000) aggregate such data into a surface by

computing the total number of person-minutes spent in
each cell of a regular grid. Other characteristics of
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multiple movements may be summarized and visualized

in a similar way. Unfortunately, summarizing movement

data into surfaces severely alters their nature, so that one

can no longer see the changes in spatial position of entities

that are the very essence of movement. In specific cases,

when the trajectories of different entities are similar, it is

possible to use methods of summarization that give a

better idea of the collective movement. Ronald Buliung

and Pavlos Kanaroglou (2004) used computational

methods of ArcGIS to build a convex hull containing all

trajectories, computed the central tendency and disper-

sion of the paths, and represent the results on a map as the

averaged path of all entities. Leland Wilkinson (1999)

describes a representation of the northerly migration of

Monarch butterflies on a map by means of ‘‘front lines’’

corresponding to different times. However, the applic-

ability of such methods is quite limited.

A possible approach to the aggregation of arbitrary

movement data is to count, for each pair of locations,

how many entities moved from the first to the second

between two time points. Of course, this is possible when

there are not too many different locations. If this is not

the case, the space is divided into regions, and all locations

within one region are treated as the same. The resulting

counts may be visualized as a transition matrix wherein

the rows and columns correspond to the locations and

symbols in the cells or cell colouring or shading encode

the counts (Guo and others 2006). For more than one

pairs of time moments, one would need to build several

transition matrices, which could then be compared.

However, the limitations of this approach with respect

to the length of the time series of movement data are

evident. Another problem is that such a visualization lacks

spatial context.

To preserve spatial information, it is appropriate to

visualize aggregated transition data as Igor Drecki and Pip

Forer (2000) did in their poster presentation about

tourism in New Zealand. This presentation contained,

among other things, the visualization shown in Figure 1,

which represents the major movement flows of tourists

during the first six days of their holidays in New Zealand;

to summarize individual data, the travel times of different

tourists have been transformed from the absolute time

scale (i.e., calendar dates) to a relative one starting from

the day of each tourist’s arrival in New Zealand. The

diagram consists of six parallel planes, shown in a

perspective view, with a map of New Zealand depicted

on each plane. The planes correspond to the days of the

tourists’ travel. The movements of the tourists are

represented as lines connecting the locations of the

major tourist destinations on successive planes. The

brightness of a line corresponds to the number of

people moving from its origin location (on the upper

plane) to the destination location (on the lower plane)

between the days corresponding to the upper and lower

planes. To make the view clearer, the authors omitted

minor flows.

While this visualization has obvious advantages over a

transition matrix, we are not aware of any software tools
that would be able to convert movement data into such

displays. As a result of the ingenious and masterly work of

expert cartographers, however, the diagram and the entire

poster may serve as a source of ideas and inspiration for

designers of computer-based tools for the visual analysis

of movement data.

Analysis and representation of movement data have long

been the focus of the research work of Waldo Tobler (e.g.,

1987, 2005). To visualize numbers of entities or volumes

of materials that moved from one place to another, Tobler

builds discrete or continuous flow maps. A discrete map

represents the movements by means of bands or arrows,

whose widths are proportional to the volumes moved (see

Figure 2). For better legibility of such a map when the
number of locations is large, minor flows may be omitted.

Continuous flow maps use vector fields or stream lines to

show continuous flow patterns (see Figure 3). According

to Tobler, in a vector field the structure is immediately

obvious, adjacent vectors being clearly correlated in length

and direction. Conversely, if this is not the case, then that

is also obvious. Continuous flow maps are, in principle,

not limited with respect to the number of different
locations present in the original data. However, producing

such maps from discrete data is computationally inten-

sive. This puts practical limitations to building animated

flow maps or sequences of flow maps, which could

represent movements during time intervals.

In the research discussed so far, aggregation helps to
reduce data volume. Another approach is based on

filtering: visualization is applied to a data subset selected

according to a user-specified query. In this case,

individual rather than aggregated data are shown.

Researchers pursuing this approach focus mainly on

advancing query and search techniques (Kapler and

Wright 2005; Yu 2006), which are outside the scope of

our study. The visualization techniques currently used are
quite traditional for individual movement data: lines on a

map or in a space–time cube and animation with moving

icons representing the entities. It should be noted that

approaches based on selection and visualization of small

data subsets do not support an overall view of the

collective behaviour of all entities.

Besides aggregation and filtering, which can be carried out

by applying database technologies, large data sets can also

be explored using data-mining techniques. It is commonly

recognized that proper visualization of data-mining

outcomes is essential for a human analyst to be able to

interpret them. Most data-mining techniques deal with

data represented as vectors in a multidimensional abstract

space, as sequences of symbols, or as logical expressions;
hence, for such a technique to be applied to movement

Designing Visual Analytics Methods
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Figure 1. Visualization of major flows of tourists in New Zealand by Drecki and Forer (2000). Reproduced by permission.
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data, the data need to be encoded in one of these forms.

An example of using data mining for movement data is

the work of Patrick Laube, Stephan Imfeld, and Robert

Weibel (2005), who analyse the movements of football

players during a game. Their approach is to divide the

whole time into short intervals and encode the move-

ments of the entities (players) during these intervals by

means of symbols representing movement directions or

other movement characteristics. Laube and others suggest

computational methods that can search through the

resulting symbol sequences for certain specific types of

collective movement patterns, such as synchronous

movement and ‘‘trend setting’’ (i.e., the movements of

some entity are repeated by other entities after a time lag).

In discussing the visualization of the New Zealand

tourism data (Figure 1), we noted that the time in the

data was transformed from absolute to relative: calendar

dates were replaced by day numbers starting from

tourists’ arrival to New Zealand. The spatial component

of movement data can also undergo various transforma-

tions, depending on the purposes of the analysis. Thus,

Mei-Po Kwan and Jiyeong Lee (2004) build surfaces of

summary characteristics of movements not in the

geographical space but in an abstract space where the

dimensions are the time of day and the distance from

home.

In general, not much research has been published on

visualization-supported analysis of large collections of

movement data. Can the existing techniques and

approaches satisfy the needs of potential analysts? In

order to answer this question and identify what sorts of

techniques are missing (if any), we need to find out what

an analyst may look for in movement data. If the major

value of visualization is that it can expose patterns in data,

we need to understand what types of patterns can exist in

movement data. Then we will be able to determine which

of the patterns types can be exposed using the existing

techniques and think about appropriate methods for

revealing the remaining types of patterns.

The following section looks at the structure and

characteristics of movement data in order to gain a clear

understanding of what is analysed. This will help us to

define the types of patterns an analyst may look for in

movement data.

Problem Statement

The ultimate goal of our study is to define a set of visual

analytics methods to support the analysis of large

collections of data about movements of multiple entities.

The focus of the analysis is the collective movement

behaviour of the entities rather than the behaviours of

individual entities. In our search for methods, we had a

special requirement: we want the methods to work even in

a situation when the full data set does not fit in the

computer’s memory. Hence, besides visual representation

of data, the methods must involve some data-manipula-

tion techniques aimed at reducing the data set to a

manageable size. These may be database operations such

as aggregation, sampling, and filtering or other computa-

tional methods such as clustering.

Figure 3. Continuous flow maps (Tobler 1987, 2005). Reproduced by permission.

Figure 2. A discrete flow map (Tobler 1987, 2005).
Reproduced by permission.
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According to the functional view of a data set (Andrienko

and Andrienko 2006), movement data can be treated as a

function matching pairs (entity, time moment) with

positions in space. This is an abstraction from real data,

which have to be finite and, hence, cannot contain the

position of each possible pair of entity and time.

However, this abstract model is convenient and sufficient

for the purpose of defining the possible tasks of data

analysis and types of patterns that may exist in movement

data.

From the positions of entities at different moments, other

movement characteristics can be derived: speed,

direction, acceleration (change of speed), turn (change

of direction), and so on. We call these derivative

movement characteristics.

The changes in position and other movement character-

istics of an entity over time form the individual movement

behaviour (IMB) of this entity (illustrated in Figure 4,

left), where behaviour is a synoptic concept differing from

the simple sequence of values of the characteristics

attained at all time moments (see Andrienko and

Andrienko 2006 for a more detailed explanation of the

term). An IMB has its own characteristics, such as

the path, or trajectory, travelled by the entity in the space;

the distance travelled; the movement vector (direction

from initial to final position); and the variation of speed

and direction. When an analyst compares the IMBs of

different entities or of the same entity at different time

intervals, he or she looks for similarities and differences in

terms of these synoptic characteristics.

Similarly, it is possible to look at the movement

characteristics of a set of entities at some single time

moment. The corresponding synoptic concept can be

called the momentary collective behaviour (MCB) of this

set of entities (illustrated in Figure 4, right). An MCB has

such synoptic characteristics as the distribution of the

entities in the space, the spatial variation of the derivative

movement characteristics, and the statistical distribution

of the derivative characteristics over the set of entities.

These synoptic characteristics are compared when we

need to find and measure similarities and differences

between MCBs at different time moments or between

MCBs of different groups of entities.

The concept corresponding to a holistic view of the

movement characteristics of multiple entities over a

certain time period (i.e., multiple time moments) can be

called dynamic collective behaviour (DCB). We assume

that the DCB is the focus of interest when data about

movements of multiple entities are analysed. That is, the

goal of the analysis of movement data is to describe, in a

parsimonious way, the DCB of all entities during the

whole time period the data refer to. In addition, or in

order to do this, the analyst may need to compare

different DCBs: DCBs of different groups of entities

during the same period, DCBs of the same group of

entities during different periods, and DCBs of different

entity groups during different periods.

Moreover, it is usually not sufficient just to describe the

behaviour. An analyst strives to establish links between the

behaviour and other potentially relevant phenomena in

order to explain the behaviour or to predict how it can

develop in the future. Various factors may influence

movement characteristics and behaviours:

1. Properties of space

� Altitude, slope, aspect, and other characteristics

of the terrain

� Accessibility with respect to various constraints

(obstacles, availability of roads, etc.)

� Character and properties of the surface (land or

water, concrete or soil, forest or field, etc.)

� Objects present in a location (buildings, trees,

monuments, etc.)

� Function or means of use (e.g., housing, shop-

ping, industry, agriculture, transportation)

� Specific meaning of a place for a moving entity

(e.g., home, work, place for sports or for leisure)

2. Properties of time

� Temporal cycles (yearly, weekly, daily, etc.)

� Physical characteristics: presence, intensity, and

duration of daylight

� Meaning in terms of typical activities: working

day vs. weekend or holiday, day vs. night

Figure 4. An illustration of the notions of individual movement behaviour (IMB) of a selected entity ei (left) and momentary
collective behaviour (MCB) at a selected moment tj (right).
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3. Properties and activities of the moving entities

� Individual properties: age, gender, health condi-

tion, occupation, marital status, and so on (for

people)

� Way of movement (free movement, by roads, by

water, by air, etc.)

� Means of movement (e.g., vehicles)

� Purposes and/or causes of the movement

� Activities performed during the movement
4. Various spatial, temporal, and spatiotemporal

phenomena: climate and weather, sport and cul-

tural events, legal regulations and established

customs, road tolls and oil prices, shopping actions

and traffic incidents, and so on.

Thus, the goals of analysing movement data referring to

multiple entities may be formulated as follows: describe

and compare dynamic collective behaviours and relate them

to properties of space, properties of time, properties and

activities of the moving entities, and relevant external

phenomena. Consequently, the goal of our study is to

define a set of instruments that will allow an analyst to

achieve these goals.

How is the definition of the goals of analysing movement

data related to the view of analysis as search for patterns?

To answer this question, we need to define the notion of

pattern.

Patterns in Movement Data

As is explained in our previous work (Andrienko and

Andrienko 2006), a pattern is a description or, more

generally, a representation of a behaviour. A pattern may

be viewed as a statement in some language (Fayyad,

Piatetsky-Shapiro, and Smyth 1996). The language may be

chosen quite arbitrarily (e.g., natural language, mathema-

tical formulas, graphical language); therefore, the syntac-

tic and morphological features of a pattern are irrelevant

to data analysis. What is relevant is the meaning, or

semantics. It is natural to assume that representations of

the same behaviour in different languages have a common

meaning. Hence, the constructs of the different languages

refer to the same system of basic language-independent

elements, from which various meanings can be composed.

By analogy with meanings of words in a natural language,

we can posit that the basic semantic elements for building

various patterns include general pattern types and pattern

properties. A specific pattern is an instantiation of one or

more pattern types. This is analogous to the specialization

of a general notion by means of appropriate qualifiers. In

the case of patterns, the qualifiers are specific values of the

pattern properties. For example, the pattern ‘‘entities e1,

e2, . . ., en moved together during the time period T’’

instantiates the pattern type ‘‘joint movement’’ by

specifying what entities and when moved in this manner.

It is quite reasonable to assume that general pattern types

exist in the mind of a data analyst as mental schemata.

Moreover, it is quite likely that these schemata drive the

process of visual data analysis, which is commonly

believed to be based on pattern recognition: the analyst

looks for constructs that can be associated with known

pattern types. Once such a construct is detected, the

analyst observes and measures the values of the pattern

properties. Visual analytics methods should be designed

so as to facilitate the detection of instances of the possible

pattern types. Therefore, in order to design proper visual

analytics methods for movement data, we must first

define the pattern types relevant to such data.

For this purpose, let us have a closer look at what we call

dynamic collective behaviour, or DCB. A DCB can be

viewed from two different perspectives:

� As a construct formed from the IMBs of all entities

(i.e., the behaviour of the IMB over the set of

entities)
� As a construct formed from the MCBs at all time

moments (i.e., the behaviour of the MCB over time)

These two views are called aspectual behaviours (a term

introduced in Andrienko and Andrienko 2006). Aspectual

behaviours exist in multidimensional data (i.e., data

having two or more referential components, or indepen-

dent variables). Movement data have two referential

components, entity and time (recall the abstract model of

movement data introduced in the previous section),

which yield two aspectual behaviours. The aspectual

behaviours are essentially different and must be described

in terms of different types of patterns.

Our previous work (Andrienko and Andrienko 2006)

introduces the basic (most general) types of patterns:

similarity, difference, arrangement, and summary. Here,

we specialize these basic types for movement data. We

omit the type ‘‘summary,’’ which corresponds to the

summarization of multiple characteristics by means of

statistics or other computational methods, and focus on

pattern types whose instances can be detected visually.

The behaviour of the IMB over the set of entities can be

described by means of similarity and difference patterns,

that is, as groups of entities having similar IMBs that

differ from the IMBs of other groups of entities. It may

happen that some entities have quite peculiar IMBs that

differ from the IMBs of all other entities. Such peculiar

IMBs are also described by means of difference patterns.

Arrangement patterns are not relevant to the behaviour of

the IMB over the set of entities because the set of entities

has no natural ordering and no distances between the

elements (see Andrienko and Andrienko 2006).

What does it mean that the IMBs of several entities are

similar? There are many possible meanings, and all of

Designing Visual Analytics Methods
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them are relevant:

1. Similarity of overall characteristics (geometric

shapes of the trajectories, travelled distances,

durations, movement vectors, etc.)

2. Co-location in space (i.e., the trajectories of the

entities consist of the same positions or have some

positions in common):

� ordered co-location: the common positions are

attained in the same order

� order-irrelevant co-location: the common posi-

tions may be attained in different orders

� symmetry: the common positions are attained in

opposite orders
3. Synchronization in time:

� Full synchronization: similar changes of move-

ment characteristics occur at the same times

� Lagged synchronization: changes of the move-

ment characteristics of entity e1 are similar to

changes of the movement characteristics of entity

e0 but occur after a time delay �t

4. Co-incidence in space and time:

� Full co-incidence: the same positions are attained

at the same time

� Lagged co-incidence: entity e1 attains the same

positions as entity e0 but after a time delay �t

All these types of similarity are possible specializations of

the general notion of a similarity pattern.

Let us now consider the other aspectual behaviour, that is,

the behaviour of the MCB over time. Mathematically,

time is a continuous set where ordering and distances

exist between the elements (i.e., time moments). Hence,

besides similarity and difference patterns, arrangement

patterns are relevant. An arrangement pattern describes

changes in the MCB with respect to the ordering and

distances between the corresponding time moments – for

example, an increase in the number of entities in some

part of the space and a decrease in other parts. Here are

the pattern types for describing the behaviour of the MCB

over time (we note in parentheses the basic pattern types

that have been specialized):

1. Constancy (similarity): the MCB is the same or

changes insignificantly during a time interval

2. Change (difference): the MCB changes significantly

from moment t1 to moment t2
3. Trend (arrangement): consistent changes in the

MCB during a time interval

4. Fluctuation (arrangement): irregular changes in the

MCB during an interval

5. Pattern change or pattern difference (difference):

the behaviour of the MCB during time interval T1

differs from that during time interval T2. The term

‘‘pattern change’’ applies when T1 and T2 are

adjacent. For example, a trend can change for

constancy or for a different trend. The term

‘‘pattern difference’’ applies to non-adjacent time

intervals.

6. Repetition (similarity): occurrences of the same

patterns of types 1, 3, or 4 or the same pattern

sequences at different time intervals

7. Periodicity, or regular repetition (similarity and

arrangement): occurrence of the same patterns or

pattern sequences at regularly spaced time intervals

8. Symmetry (similarity and arrangement): opposite

trends or pattern sequences where the same patterns

are arranged in opposite orders

The pattern types listed above can be called ‘‘descriptive,’’

since they can be used to describe a DCB. Behaviours

corresponding to some of these pattern types can be seen

in the visualization partly reproduced in Figure 5.

The visualization represents the movements of a number

of white storks during two migration seasons: more

specifically, movement speeds aggregated temporally by

months and spatially by cells of a regular grid. The upper

left map demonstrates similarities and differences between

IMBs. There are two groups of birds with different IMBs:

some birds fly on the west, while the other group flies on

the east. An ordered spatial co-location exists between the

movements of the birds in each group. The sequence of

maps in each row demonstrates changes in the MCB over

time. Moreover, there are vivid trends: consistent shifts in

the positions of the birds to the south at the beginning of

the migration season and to the north at the end of the

season. A symmetry pattern can be seen between the

southward movement trend in August and September and

the northward movement trend in March and April.

Comparison of the migration movements in different

seasons reveals periodicity patterns, despite the presence

of certain difference patterns between the seasons.

Unfortunately, Figure 5 provides very limited possibilities

for comparisons, as it includes, for space saving reasons,

maps for four only selected months in two selected

seasons.

Relations between the DCB and properties of space, time,

entities, external phenomena, and events need to be

described in terms of different types of patterns:

correlation, influence, and structure (Andrienko and

Andrienko 2006). We use the term ‘‘correlation’’ in a

more general sense than statistical correlation between

numeric variables; it may also denote co-occurrence of

any characteristics, in particular spatial and qualitative,

and co-occurrence of behavioural patterns. Influence

means that some things or phenomena produce effects

on others. Viewed from the opposite direction, influence

may also be called dependency. Structure is the composi-

tion of a complex behaviour from simpler ones, as the

visible movement of the planets is a composite of their

own movements and the movement of the Earth.
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Correlation, influence, and structure are collectively called

connectional patterns.

To analyse movement data, an analyst needs tools and

methods that facilitate the discovery of all types of

patterns, both descriptive and connectional. However, the

design of such tools and methods faces a number of

challenges that can be quite difficult to overcome.

Challenges

Irrespective of the size of a data set, movement data are

difficult to visualize and analyse because of the quite

complex data structure, which involves time, space,

multiple entities, and multiple movement characteristics.

Is there any way to display all this information so that the

representation is comprehensible to a human viewer? The

representation of two-dimensional space requires two

display dimensions. Time may be represented by means of

the third spatial dimension, as in a space–time cube, also

called a space–time aquarium (Hägerstrand 1970; Kraak

2003), or by means of the temporal dimension in an

animated display (Andrienko, Andrienko, and Gatalsky

2000, 2005). There are also other ways of representing

time in combination with space (Vasiliev 1997), but they

are much more limited with respect to the number of

different values that can be discernibly shown in a display.

From a representation of individual trajectories by means

of lines in an interactive 3D display, it is possible to

estimate the positions, speeds, directions, and other

movement characteristics at different times. Similarities

and differences between IMBs are noticeable. The use of a

movable plane, as suggested by Menno-Jan Kraak (2003),

helps in exploring the MCBs at different moments and the

behaviour of the MCB over time. However, all these

benefits fade away with an increase in the number of

moving entities, the length of the time period, or the

geometric complexity of the trajectories. The data do not

need to be very numerous: a space–time cube with only

10 trajectories will already look like a bowl of spaghetti,

from which one can extract hardly any useful informa-

tion. Similarly, an animated display of individual move-

ments (in particular, the ‘‘time window’’ mode of

animation as described by Andrienko and others 2000,

2005) is quite appropriate when the entities are few and

Figure 5. Visualization of aggregated movement speeds of white storks during two migration seasons: 1999/2000 (top) and
2000/2001 (bottom). The first two maps in each row correspond to August and September, respectively, and the second two
maps to March and April, respectively. The maps corresponding to the intermediate months have been omitted for reasons of
space.
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the time period not very long but decreases in utility with

increasing numbers of moving entities or time moments

in the data. The upper limit may be higher for an

animated display than for a space–time cube: in an

animated display, the information is presented in

portions, which makes the display at any given moment

simpler and easier to perceive than a space–time cube,

which portrays all information at once. However, this

slight increase in the applicability limit does not solve the

problem in general. Besides, the portion-wise representa-

tion of information has clear disadvantages: no overview

of the whole data set is possible, nor is any comparison

between states at different moments.

Data-size limitations on visual displays arise long before

the size becomes too big for the computer’s memory.

Therefore, some methods for reducing the size of the data

set must be applied prior to the visualization. Possible

approaches include aggregation, filtering, and clustering.

When the data set is too big for human perception but not

yet too big for the computer, high interactivity may

compensate for the inevitable information losses resulting

from data reduction. Suppose, for example, that the

visualization shown in Figure 1 is an interactive display on

the computer screen that allows the user to click on the

lines in order to select the corresponding entities. In

response, the movements of the selected entities are

shown in the display as lines of a different colour.

Through further interaction with the display, the user

may modify the selection and immediately receive visual

feedback. Moreover, several displays of aggregated data

providing complementary views of the data set may be

linked by means of brushing, similarly to the linked

histograms in Attribute Explorer (Spence and Tweedy

1998; Spence 2001). For example, the display with tiered

maps, as in Figure 1, may be linked to a bar chart showing

the numbers of tourists coming from different countries.

When the user selects a subset of tourists through the

tiered map display, the bar chart shows how many of these

tourists come from each country by means of special

colouring of the corresponding bar segments. The user

may also select the tourists coming from a particular

country by clicking on the respective bar chart. In

response, the tiered map display will show the flows of

these tourists.

Things become much more complicated when the

original data cannot be stored and processed in the

computer’s memory. This means that aggregation, filter-

ing, clustering, selection, and brushing cannot be done

without the involvement of database operations, which

may take a great deal of time. Hence, the visual displays

can no longer be interactive in the same way as with

smaller data sets. It is necessary to devise new methods of

interaction that can still perform reasonably well when

data sets are huge.

Because of the challenges arising from large data volumes,

Daniel Keim (2005) argues that Ben Shneiderman’s

Information Seeking Mantra – ‘‘Overview first, zoom

and filter, and then details-on-demand’’ (1996) – should

be replaced by a Visual Analytics Mantra (VAM):

‘‘Analyse First – Show the Important – Zoom, Filter and
Analyse Further – Details on Demand.’’ The VAM stresses

the fact that fully visual and interactive methods do not

work with large data sets. It is necessary to start with

database operations and computations (‘‘Analyse1 First’’)

and apply visualization to the results obtained (‘‘Show the

Important’’). The user may interact with the visualization

and the secondary data it represents (i.e., the outcomes of

the analysis but not the original data), in particular by
zooming and filtering, and may trigger further analysis,

which, again, requires visualization of the results. In this

way, visual analytics is an iterative process involving three

major steps: computational analysis, visualization of the

results of the computational analysis, and interactive

visual analysis of these results. A detailed consideration

(‘‘Details on Demand’’) is possible for small data portions

when they require, for some reason, special attention from
the analyst. This does not necessarily happen at the end of

the process.

Thus, visual analytics tools for movement data need to be

designed in accord with the VAM, whereby database

technologies and computational analysis are applied prior

to visualization and iteratively reapplied during the

process of data analysis. Let us now examine what

methods for data manipulation, computational analysis,
visualization, and interaction might be suitable to support

the analyst in detecting the diverse types of patterns in

massive movement data.

Supporting Pattern Detection: A Road Map

DATA MANIPULATION

Aggregation

One of the most important data-manipulation methods is

aggregation. Like any other method of data reduction, it

involves substantial information loss but also has a

positive side, in this case the ability to generalize

(i.e., omit ‘‘high-detail noise’’ and focus on characteristic

features of the phenomenon under study). The degree of

data aggregation and generalization matters greatly in

data analysis. What matters is not only the size of the
resulting data set and the amount of information lost but

also the scale at which the data are considered. Depending

on the scale, the analyst sees the data differently and

detects different patterns. Thus, in movement data, there

may be local patterns, such as a flock (synchronous

movement of multiple entities having close positions and

the same speed) or larger-scale patterns such as massive

movement toward industrial or commercial areas each
morning or, on a yet larger scale, the difference of
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collective movement patterns on weekdays and weekends,

and so on.

Hence, the appropriate degree of data aggregation and

generalization is not determined simply by finding a good
trade-off between the simplification gained and the

amount of information lost. The aggregation must be

adequate to the goals of the analysis (i.e., the scale at

which the analyst seeks to detect patterns). If the interests

of the analyst include patterns at different scales, it is

necessary to consider the data at different levels of

aggregation. Tools for visual analysis must therefore

enable the user to do this.

Aggregation consists of two operations: (1) grouping

individual data items (i.e., dividing the data into subsets);

and (2) deriving characteristics of the subsets from the

individual characteristics of their members. Typically,

various statistical summaries are used as characteristics of

the subsets: number of elements, mean, median, mini-
mum, maximum values of characteristics, mode, percen-

tiles, and so on. It is also important to know the degree of

variation of the characteristics within the aggregates. For

this purposes, such statistical measures as variance (or

standard deviation) or inter-quartile distance are com-

puted. Aggregates with high variation of characteristics

among members should not be used in data analysis, since

they may lead the analyst to incorrect conclusions about
the data.

Methods for grouping/dividing movement data
Grouping/division may be necessary not only for data

aggregation but also for other kinds of data processing,

such as clustering. Movement data involve two referential
components: the set of entities and the time. Grouping/

division may be applied to either or both. The time may

be divided into equal-length intervals (e.g., 10 minutes,

one hour, one week); depending on the data and analysis

goals, it may also be useful to divide the time into slightly

unequal intervals corresponding to calendar units, such as

months, quarters, or years, or to apply other division

principles (e.g., to divide a school year into semesters and
breaks). Furthermore, it may be reasonable to divide the

time into subsets consisting of non-contiguous intervals,

in particular, according to one or more of the temporal

cycles; the user may wish to group all Mondays, all

Tuesdays, and so on. Hence, the data analytics toolkit

should include a tool for time partitioning whereby the

user can flexibly define the principles of division.

A similar tool is needed for dividing the set of entities.

This set has no distances that can provide a basis for

division, as in the case of time. It can instead be divided

on the basis of the characteristics of the entities (e.g., age

or occupation, in the case of people) or characteristics of

their movement (e.g., position in space, speed, direction).

This means that entities with similar values for the
selected characteristics are grouped together. For the

purposes of this grouping, either computational methods

(clustering) or interactive techniques can be applied. The

groups (clusters) of entities resulting from computational

methods may be quite difficult to interpret. An appro-

priate visualization of the characteristics of the entities

forming the clusters may be helpful.

For interactive grouping, the user chooses the character-

istics and specifies equivalence classes between their values

(i.e., which values must be treated as similar). The method

of defining equivalence classes depends on the type of a

characteristic. Thus, for numeric values, the user divides

the whole value range into intervals. If the values of a

qualitative characteristic are not too numerous, groups

are formed from entities with equal values; otherwise, the

user may wish to divide the values into classes according

to their semantic closeness. For positions in space, the

user may divide the space into compartments. In

particular, these may be cells of a regular grid, with the

cell size and, possibly, shape (e.g., rectangular or

hexagonal) chosen by the user. These may also be units

of an administrative or other existing territorial division

or regions specified interactively according to any

appropriate criteria such as surface type, way of use,

accessibility, or other relevant properties of the space (see

the list given under ‘‘Problem Statement’’ above). The

visual analytics tools should support such arbitrary

divisions of the space. Thus, the user may define space

compartments by interacting with a map display or by

applying database search operations such as retrieving the

locations of schools, shops, and so on.

As mentioned above, entities may be grouped according

to values of their movement characteristics. Since these

values change over time, interactive grouping can be

carried out on the basis of values at selected moments or

on the basis of aggregated values over time intervals.

Unfortunately, selection of each additional time moment

or interval multiplies the number of groups and causes

difficulties for the visualization and visual exploration of

the results of the aggregation.

Besides values at selected moments, entities can also be

grouped on the basis of changes in the values occurring

between two moments in time. A change involves several

aspects:

� the original value and the resulting value

� the amount or degree of change, that is, the absolute

or relative distance between the original and

resulting values (in a case when distances between

the values exist)

� the direction of change: increase or decrease for

numeric or ordinal values; spatial direction for

positions

Any of these aspects may be taken as the basis for

aggregation. Suppose, for example, that the user wishes to
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aggregate entities according to changes in their speed

from moment tx to moment ty. The user may divide the

whole range of speeds into intervals (say, three intervals:

low, medium, and high speed) and build aggregates on

the basis of all possible pairs (i.e., low/low, low/medium,

low/high, medium/low, etc.). The user may also find the

range of speed change, that is, from the maximum

decrease (taken as a negative number) to the maximum

increase, and aggregate the entities by dividing this range

into suitable intervals. Or, again, user may divide the

entities into three groups depending on whether their

speed has increased, decreased, or remained the same. It is

clear that these approaches to aggregation are not

equivalent in terms of the information that may be

gained as a result. By analogy to the example of speed,

grouping the entities according to changes in their spatial

position may be done on the basis of possible pairs

composed of a source position and a destination position,

on the basis of the distances between original and final

positions, or on the basis of the spatial direction in which

the destination lies with respect to the source position.

Methods for dividing (grouping) movement data are

summarized in Table 1.

Change computation: Transformations of space and time

Aggregation is not the only useful data transformation,

and we shall briefly discuss some other data-manipulation

techniques that may increase the comprehensiveness of

analysis and give additional insights into the data. One of

them is the computation of the amount or degree and the

direction of change, which is valuable not only for

grouping of the entities by also in itself. Thus, it may be

useful to look at change maps portraying (in a generalized

manner) changes in MCB from one moment to another.

Among the possible methods, the most useful may be

transformations of space and time from absolute to

relative. Similarities between temporally or spatially

separated behaviours can more easily be detected when

these behaviours are somehow aligned in time or in space.

To align behaviours in time, the ‘‘objective,’’ absolute

time of each behaviour (i.e., calendar date and time) is

ignored and only its ‘‘internal’’ time is considered

(i.e., the time relative to the moment when this behaviour

began). An example is the representation of tourist

movements in New Zealand (Figure 1). The tourists

come to New Zealand on different days; however, the data

are presented as though all the tourists arrived simulta-

neously. For this purpose, the designers of the visualiza-

tion transformed the absolute dates into day numbers

starting from the day of arrival to New Zealand.

In this example, the analysts superposed the starting times

of the IMBs of different tourists. It may also be useful to

superpose both starting and ending times. In this case, the

absolute time moments in each IMB are transformed into

their distances from the starting moment and divided by

the duration of the behaviours (i.e., the lengths of the

Table 1 Methods of dividing/grouping movement data

What Is Divided/Division Principle Method of Division Examples

Time / inherent ordering and distances Regular intervals 10 minutes, 2 hours
Existing division Days, months
Temporal cycles Time of day, day of week
‘‘Semantic’’ division Day and night; workday and weekend

Entities / numeric characteristics Regular intervals Speed: 0–10, 10–20, . . . , 190–200 km/hour
‘‘Semantic’’ intervals Age: 0–15, 16–24, 25–64, 65þ

Entities / qualitative characteristics Individual values Vehicle type: bike, motorbike, car, truck
‘‘Semantic’’ groups of values Travel purpose: business (work, study), shopping

and services, leisure (sports, walk,

entertainment)
Entities / spatial positions Regular sections Rectangular grid

Existing division Administrative districts, cities
Space properties Water, forest, field, built-up area
‘‘Semantic’’ division City centre, residential area, shopping area,

industrial area
Entities / changes Original and resulting values From France to Germany, from Germany to

France, from France to the United Kingdom,

from the United Kingdom to France (see

Figure 2)
Amount or degree of change Distance travelled: 0–0.01 km (no change), 0.01–

100 km, 100–500 km
Direction of change North, north-east, east
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intervals between the starting and ending moments). This

facilitates the detection of similarities between movements

performed at different speeds. Such an approach could be

useful, for example, in comparing the movements of

migratory animals in different years.

Moreover, there may be cases when non-uniform

transformation of the time of each IMB is reasonable.

For example, an analyst exploring the daily movements of

people may be interested in excluding the times when

these people stay in the same place for an extended period

(e.g., at work, in a shop, at home) and adjusting the times
when they move. In this case, time transformation is

performed separately for each interval of movement.

Analogous ideas can be applied for spatial alignment of

IMBs initially disjoint in space. An analyst may try to

bring a set of IMBs (trajectories) to a common origin and

search for coincidences between them. Furthermore, the

analyst may be interested in disregarding the direction of

movement and considering only changes in direction

(turns). For this purpose, the trajectories are ‘‘rotated’’

until the initial movement directions coincide.
Coincidences between further trajectory fragments indi-

cate similarities. It may also be useful to ‘‘stretch’’ or

‘‘shrink’’ the trajectories to adjust their lengths.

In looking for co-location of trajectories where positions

are specified as points in space, it may be reasonable to

apply a kind of ‘‘spatial coarsening,’’ that is, to replace the

original points with regions (areas), for example, circles

with some chosen radius around the points. The resulting

trajectories are treated as similar when there is an overlap

between their ‘‘expanded’’ positions, even though there

may be no sharp co-incidence between the original
positions.

In studying MCBs and their behaviours over time, it may

be appropriate to treat the space as a discrete set of

coarsely defined ‘‘places’’ rather than as a continuous set

consisting of dimensionless points. For this purpose, one

uses space partitioning, which has been discussed before

in relation to data aggregation. Such a transformation

may be called ‘‘space discretization.’’ Furthermore, it may

be useful to transform the geographical space into a kind
of ‘‘semantic’’ space consisting of such locations as home,

workplace, shopping site, and sport facility. Each

trajectory is then transformed into a sequence of move-

ments between pairs of these locations, and the analyst

looks for similar sub-sequences occurring in different

trajectories.

Table 2 indicates what types of patterns various data

transformations may help to detect.

When we say that the analyst looks for similarities

between IMBs, we do not really mean that the IMBs are
presented to the analyst as individual items, without

aggregation or generalization. As discussed above, the

large size of the data set precludes this method of analysis.

Therefore, similarities between IMBs need to be detected

somehow without the analyst’s seeing the IMBs. This can

only be done by using methods of computational analysis,

as discussed in the next subsection.

EXPLORING THE BEHAVIOUR OF IMBS OVER THE SET OF ENTITIES

Clustering of IMBs

In order to analyse IMBs without seeing them, the analyst

can apply clustering methods, which divide entities into

groups so that the entities within each group are as similar
as possible and differ as much as possible from the entities

Table 2 Some types of patterns in movement data and data transformations that may support pattern detection

Pattern Type Data Transformations

Full synchronization of IMBs (same changes at same times) Change computing: original values transformed into changes of

position, speed, direction
Lagged synchronization of IMBs Change computing (see above)

Temporal alignment: superposition of the starting moments
Order-irrelevant co-location of IMBs Spatial coarsening (disregards minor differences in positions)
Co-incidence in space and time
Lagged co-incidence of IMBs Spatial coarsening

Temporal alignment: superposition of the starting moments
Ordered co-location of IMBs Spatial coarsening

Temporal alignment: superposition of the starting and ending

moments (disregards differences in speed)
Geometrically similar trajectories Spatial alignment: superposition of origins and destinations

Spatial coarsening
Temporal alignment: superposition of starting and ending

moments
Constancy, change, trend in the MCB Change computing

Space discretization
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in the other groups. If a clustering method can group the

moving entities according to similarities and differences

in their IMBs, the analyst can then look at various

aggregated characteristics and aggregated behaviours of

the groups instead of looking at the individual behaviours.

A clustering method computes numeric values expressing

the degree of similarity between entities. These values are

usually called ‘‘distances’’ (in an abstract sense): the

smaller the distance, the more similarity exists between
the entities. Thus, to group moving entities according to

their IMBs, it is necessary to find a way to express

numerically the degree of similarity between two IMBs,

or, in other words, to define a method for computing

distances between IMBs. Such a method will be referred to

here as a ‘‘distance function.’’

As we have noted, two or more IMBs may be similar in

various diverse ways, and any type of similarity may be of

interest. Each type of similarity requires a different

distance function. Thus, the degree of spatial and

temporal co-incidence is computed from the distances
between the spatial positions at the corresponding

moments. The same function would be suitable for

lagged co-incidence after applying temporal alignment to

the IMBs (see Table 2). The degree of order-irrelevant co-

location may be computed from the distances between

each position on one trajectory and the nearest position

on the other trajectory. For the degree of ordered co-

location, the corresponding function must find common
(overlapping) positions and check whether they were

reached in the same order. This method is also suitable for

estimating the degree of similarity of trajectory shapes

after the trajectories have been spatially aligned.

Hence, it is reasonable to devise a clustering tool where

the distance function is replaceable. In this case, the

analyst could choose the appropriate distance function,

depending on his or her current interests, and let the

clustering tool run with the use of this function. A library

of appropriate distance functions can be created in

advance, as well as a library of data-transformation
methods.

It should be also borne in mind that the existence and the

types of similarity patterns between IMBs depend on the
temporal resolution chosen for looking at the data. Thus,

fine movements of entities, which are made at the scale

of minutes or hours, may be quite different, yet there may

be a clear similarity between the behaviours of the same

entities considered at the scale of days or weeks. It makes

sense, therefore, to run a clustering method several times

with the same distance function but different degrees

of aggregation and generalization of the data with respect
to time (i.e., with the time partitioned into intervals

of different lengths).

A serious technical problem in applying clustering
algorithms is that they can work effectively only when

the data are resident in computer memory. The reason for

this is the necessity for numerous and repeated distance

computations. Not only do pair-wise distances between

entities need to be computed but also, as clusters are built,

the distances between the current clusters (which change

over time) and those entities that have not yet been
attached to any cluster must be computed as well. When

the data set is too big for the computer’s memory,

clustering may require too much time.

One possible way to cope with this problem is based on

sampling. The idea is that a subset of entities is sampled

from the whole set of entities so that the corresponding

movement data set is of a size suitable for effective

clustering. Depending on the specifics of the data and the

goals of the analysis, it may also be reasonable to sample

fragments of IMBs. For example, from data about people’s

movements over many days, fragments corresponding to
one-day movements of individuals can be sampled.

Once a manageable subset of IMBs or fragments of IMBs
has been extracted, clustering is applied to this subset.

After the clusters are built, the distances between them

and each of the remaining IMBs or fragments can be

computed, using the same distance function as for the

clustering. This requires a single run through the

database. On this basis, each IMB or fragment is attached

to the closest cluster or, if it is too distant from all clusters,

selected for further application of clustering or for
detailed consideration by the user (this may be an

anomalous behaviour).

Visualization of clustering results

After the clustering is done, the results need to be

visualized so that the analyst can interpret and investigate

them. The visualization must allow the user to see the

common features of the IMBs in each cluster as well as the

degree of variation. Unfortunately, clustering algorithms

do not provide any general description of the clusters

built. The clusters are defined extensionally, that is, by
listing the elements they consist of. Hence, any informa-

tion about the common features of the IMBs in each

cluster must be extracted from the data as the input of the

clustering method. A realistic way to do this is to obtain

various statistics about the movement characteristics of

the members of a cluster by means of database operations

and to visualize these statistics. By comparing the statistics

for different clusters, the analyst can understand what the
members of each cluster have in common and how they

differ from the members of other clusters. Andrienko and

Andrienko (2006) demonstrates how histograms can be

used to interpret clusters built on the basis of numeric

characteristics of entities. In the case of movement data,

appropriate statistics and visualizations are chosen

depending on how the similarity between the IMBs has

been defined for the clustering operation (i.e., what kind
of distance function has been used).
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Thus, when IMBs have been clustered on the basis of the

co-location of trajectories, a suitable visualization would

be a map which, for each location in space (real space or,

if there are too many locations in the source data, the

results of space discretization), shows how many trajec-

tories it appears in. Graduated symbols or graduated
shading would be suitable for this purpose. A separate

map is built for each cluster, which enables comparison of

the clusters.

For ordered co-location and for spatiotemporal co-

incidence, it is reasonable to compute, for each pair of

locations x and y and time interval T, how many cluster

members moved from x to y during the interval T, where

T results from an appropriate partitioning of the time

(which may be previously transformed, as discussed in the

previous section). A good way to visualize such statistics is

using tiered maps, as in Figure 1. In the case of ordered
co-location, the third (temporal) dimension reflects the

temporal order; in the case of spatiotemporal co-

incidence, either full or lagged, the third dimension also

reflects temporal distances.

Another possible way to visualize results of clustering is to

portray the individual trajectories, possibly transformed,

if data transformation has been used for the clustering

operation. Since the trajectories are supposed to be close

and similar, the resulting display is less likely to resemble a

bowl of spaghetti and may be quite comprehensible. If the

trajectories are represented by semi-transparent lines,
darker shades will emerge where many lines overlap, in

this way indicating the common features of the trajec-

tories. However, this idea needs to be verified by

implementing and testing both clustering methods and

visualization.

When clustering is used to group IMBs according to

derivative movement characteristics rather than positions,

other types of visualization are appropriate. For example,

variation in speed may be shown on a time graph, while a

segmented bar chart might represent the distribution of

movement directions at each time moment.

Besides the features of the IMBs of cluster members, the

analyst should be informed about the number of members

in each cluster and the statistics of their static character-
istics, if these are available in the data. The analyst should

also be able to obtain any statistics concerning the

movement of the entities, such as average and maximal

speed or total distance travelled.

Apart from computational clustering and visual examina-

tion of the results, the user may be interested in a close

look at subsets of IMBs with specific features (e.g., the

trajectories whereby entities move toward the city centre

in the morning and away from the city centre in the

evening). For this purpose, interactive query tools are

necessary. A challenge is to design effective methods for
data retrieval and visualization to ensure an acceptable

reaction time. It is also important to design a proper user

interface, taking into account that quite perceptible delays

are unavoidable with large data sets, especially when the

data are not memory resident. Thus, the principle of the

dynamic query (Ahlberg, Williamson, and Shneiderman

1992), whereby the tool immediately reacts to any slight

user interaction with the query device, such as moving a

slider by one pixel, is not applicable to this case. However,

the tool should enable the user to work by refining the

query interatively, depending on the results of the

previous stage, as well as by formulating a complete

query all at once.

EXPLORING THE BEHAVIOUR OF THE MCB OVER TIME

In order to explore the behaviour of the MCB over time,

the analyst needs visualizations that show him or her the

MCB at different time moments or, in a summarized way,

at different intervals into which the whole time of

movement is divided. There are two basic ways to do

this: an animated display (map, diagram, or graph,

depending on the information to be portrayed) and

multiple uniform displays, or ‘‘small multiples,’’ in the

terms of E.R. Tufte (1983; see illustration in Figure 5). We

will not discuss here the advantages and disadvantages of

each approach (in our opinion, they are complementary

and should be used in combination); instead we will focus

on the content of a single animation frame or a single

display in small multiples, which corresponds to the MCB

at a single time moment or during a single interval.

In order to look at the spatial distribution of the moving

entities at a selected time moment (interval), it is natural

to use a map. Since the entities are very numerous, their

positions must be shown in an aggregated manner (i.e., as

densities). Some approaches visualize densities as smooth

surfaces, built using kernel methods or other computa-

tional techniques. Such surfaces are represented by

colouring or shading, by contour lines (isolines), or in

3D views, which are rather appealing visually. Another

approach is ‘‘binned’’ visualization of densities, whereby

the map area is divided into regular ‘‘bins’’ or cells

(e.g., squares) and the number of entities fitting into each

cell is shown by colouring, shading, or graduated symbols

(see Figures 5 and 6). Such a visualization can be built

using database operations. The user can vary the size of a

cell in order to look at the data at different levels of

aggregation (of course, re-aggregation of a large database

may require some time).

Maps are suitable for showing not only the positions of

the entities but also various movement characteristics

associated with these positions, such as speed and

direction of movement. Again, in the case of large data

sets, these characteristics need to be aggregated.

The ‘‘binning’’ approach is appropriate here: it is possible

to compute and visualize various summary statistics for
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each cell, such as average, minimum, and maximum

speeds or the number of entities moving in each direction.

A single value (such as average speed) may be represented

by colouring, shading, or graduated symbols, as in

Figures 5 and 6. Prevailing movement directions can be

indicated by arrows, as in Figure 3 (left). Several values

(e.g., numbers of entities moving in different directions)

require the use of diagrams. The sizes of the diagrams

should not exceed the sizes of the cells where they are

placed, and therefore the cells must be large enough for

the diagrams to be legible. Representations of average,

median, or most frequent values should be accompanied

by the display of appropriate statistics expressing the

degree of variance. An example is given in Figure 7, where

triangle symbols are used to represent both the mean

values and the variances of the values in the cells.

As a complement to maps and perspective views of the

(geographical) space, non-cartographic displays are used

to look at the statistical distribution of various movement

characteristics at different time moments or over different

intervals. Frequency histograms provide aggregated infor-

mation about the statistical distribution of numeric

values; statistics about qualitative values can be shown

by bar charts in which each bar corresponds to one value

and the size of the bar is proportional to the number of

occurrences of this value. For statistics about movements

in different directions, it may be convenient to use radial

bar charts, wherein the orientation of the bars corre-

sponds to spatial directions: north, north-east, east, and

so on. By analogy to the spatial views, such displays are

built for each moment (interval) in time and presented

simultaneously as small multiples or in temporal sequence

(animation).

Another possibility is to represent the time using one of

the display dimensions, as in a time graph. For example,

this might be a display wherein the horizontal dimension

represents the whole time period divided into intervals;

for each interval there is a segmented bar showing the

frequencies of different values of some movement

characteristic, that is, the number of occurrences of each

value (for qualitative values) or the number of occur-

rences of values from each of the intervals previously

specified by the user (for numeric values).

To facilitate detection of significant changes in the MCB,

it is useful to compute and visualize the changes that take

place from one moment (interval) to another, in

Figure 6. A display of vehicle movement data aggregated by spatial cells.
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particular, changes with respect to the previous moment

or interval. For example, with ‘‘binned’’ maps, the

differences between the values in the cells at consecutive

moments (intervals) may be computed and represented

by cell colouring. It is reasonable to use a diverging colour

scale (Brewer 1994) on which one hue represents decrease

and another represents increase. It is also useful to

compute changes in the movement characteristics of the

individual entities and represent them in an aggregated

way on maps and non-cartographic displays. For example,

the visualization technique using temporally ordered

segmented bars, discussed above, may be used to

represent changes in speed: how many entities decreased

their speed (by more than x%, by x1 to x2%, etc.), how

many entities kept the same speed, and how many entities

increased their speed (by more than x%, by x1 to x2%,

etc.). While the primary focus of the analysis is the

collective movement behaviour rather than individual

movements, significant changes in the statistical or spatial

distribution of individual movement characteristics may

indicate changes in collective behaviour.

It should be noted that aggregated displays can be used

not only for viewing the data but also as direct

manipulation query devices: the user can select subsets

of data by selecting the aggregates representing them

(e.g., cells on a map, bars in a histogram, or segments in

segmented bars). To support such interaction, the displays

must ‘‘remember’’ how each aggregate has been produced

and be able to transform user actions into appropriate

database queries. However, it must be taken into account

that noticeable time may be needed to fulfil queries in the

case of massive data sets. Therefore, immediate reaction of

the tool to any user click or slight mouse movement may

be inappropriate. Instead, the user should be able to make

and modify selections without triggering any queries and,

when the selection process is finished, to signify this

explicitly.

LOOKING FOR CONNECTIONAL PATTERNS

Interactive techniques

Direct-manipulation query interfaces are especially con-

venient for brushing, where the user interactively selects a

subset of data and, in response, graphical elements in

different displays corresponding to this subset are

similarly marked (highlighted). Brushing helps the analyst

to establish links between two or more displays providing

complementary information. This, in turn, may be helpful

in a search for connectional patterns (i.e., correlations,

influences, and structural links between characteristics,

phenomena, processes, events, etc.).

For example, the analyst may use a map to select areas

with a high density of moving entities at some time

moment t1. From maps corresponding to other moments,

the analyst will learn whether the densities are always

higher in these areas than in the remaining territory,

which may indicate a link between the number of moving

entities and the properties of the space where they move.

From speed histograms, the analyst may see whether there

is any relation between the areas of high density and the

variation of the speed of movement, such as high speeds

of the entities before entering the areas of high density,

low speeds inside these areas, and high speeds after exiting

these areas. Furthermore, simultaneously with the displays

of the movement data, the statistical distribution of the

static properties of the moving entities or their activities,

by time intervals, may be visualized. Then the analyst can

discern whether the entities in the areas of high density

Figure 7. The heights and the widths of the triangle symbols encode the mean values and the variances, respectively,
computed for the cells.
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have any particular properties or perform any particular

activities. If a display of various events is available (this

may be a map display if the events are spatially located, or

a calendar display otherwise), the analyst can see whether

the times and places of high density are related to any

events.

It should be noted that direct manipulation and brushing,

while convenient and easy to use, are not strictly necessary

for such an analysis. Other query interfaces are also

possible. However, a disadvantage of using queries to

search for connectional patterns is that each query

provides information about one subset of the data,
which means that the procedure must be repeated for

other subsets. In our example, the analyst would have to

select other places on the same map, the same places on

maps corresponding to other time moments, and other

places on other maps. Moreover, data subsets can be

selected using various criteria (space, time, speed,

direction, means of the movement, activity, etc.) and

combinations of criteria, so that the number of possible
selections is infinite. Hence, the use of querying is

reasonable when it is necessary to investigate particular

cases, especially outliers such as extreme values or extreme

changes.

A better way to search for correlations and dependencies

is to divide the whole data set into subsets (rather than
selecting a single subset) on the basis of various

characteristics and to obtain, for each of these subsets,

appropriate statistics of other characteristics. These

statistics are then compared, possibly visually; significant

differences between them may indicate the presence of

links between the two (groups of) characteristics. For

example, all movements may be partitioned into subsets

according to their positions within a temporal cycle, such
as the days of the week. Then the analyst can look at

visualizations of aggregated positions, speeds, movement

directions, and so on in each subset in order to see

whether the movement characteristics are related to

temporal cycles. Another example is dividing entities

according to their static characteristics or their activities

and looking at statistics of their movement characteristics.

Such divisions, as well as computation of statistics, can be
done by means of database operations.

We have also mentioned another method of division:

division of the set of entities into groups according to

similarity of their IMBs by means of clustering. After the

application of clustering, it is useful to look at various

statistics for the resulting clusters in order to judge, for
example, whether there are any links between the

properties or activities of the entities and the features of

their IMBs.

Visual techniques
There are also purely visual methods to search for links.
For example, overlaying several information layers on a

map may support the detection of links between the

movement characteristics and various properties of the

underlying territory, as well as spatial and spatiotemporal

phenomena and spatially located events. Figure 5 provides

an example of overlaying the representation of aggregated

movement characteristics on a satellite image. This allows
the viewer to notice, in particular, that storks do not fly

straight from Europe to Africa but skirt the sea, which

demonstrates the dependence of the movement on the

character of the underlying surface. It is also possible to

establish links by comparing two or more map displays

presenting different information related to the same

territory; however, it may be more difficult to detect

correspondences than where all information is presented
in the same display.

In order to detect links between movements and temporal

cycles, it is useful to look at small multiples representing

movements at different times and arranged according to

the temporal cycles, as illustrated in Figure 5. To detect

links with various temporal events, these events can be
indicated on displays of movement data according to the

times of their occurrence. For example, small multiples or

animation frames corresponding to these times may be

specially labelled or marked. On displays representing the

time as one of the display dimensions, the times of events

can be marked at the corresponding positions within this

dimension.

A classical visualization technique that supports detection

of correlations between numeric or ordinal variables is the

scatter plot. For massive data sets, a modification of this

technique known as the binned scatter plot may be used.

The area of the plot is divided into regular compartments,

or bins. Within these compartments, the frequencies of

corresponding value combinations are shown by symbol
sizes, shading, or colouring. In particular, one axis in such

a scatter plot may represent absolute or relative

(transformed) time or positions within a temporal cycle.

Figure 8 demonstrates three variants of a binned scatter

plot summarizing the stork movement data mentioned in

Figure 5; the variants differ in the form of the graduated
symbols drawn in the bins. The division of the horizontal

axis corresponds to the months of eight different

migration seasons, from August to May. The division of

the vertical axis corresponds to 20 equal intervals in which

the range of speed variation has been divided. For each

combination of month x and speed interval from y to z,

the number of occurrences of this combination in the data

is represented in the corresponding bin by a square or
rectangle of a proportional size. If such a combination

does not occur, the bin itself is not drawn.

This visualization makes it clear that speeds in October

(the third month in the season) are much lower than in

the other months and that there are not many movements

in May (the last month). The highest speeds are attained
in August–September and in March–April.
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In principle, correlations and dependencies can also be

detected using data-mining methods devised to find rules

that predict the value of an attribute on the basis of the

values of other attributes. As we have already mentioned,

data-mining techniques usually require the data to be

encoded in a suitable form, such as logical expressions. To
make it possible to look for possible connections, not only

the movement data themselves need to be encoded but

also data about potentially related factors such as various

properties of the space, time, and moving entities, as well

as other phenomena or events. This requires the

development of suitable encoding methods for various

types of data. Spatial and spatiotemporal data are the

most difficult to convert into symbolic form. Some
approaches to encoding spatial data can be found in the

literature on spatial data mining (e.g., Ester, Kriegel, and

Sander 2001); however, there is as yet no sufficient

assortment of methods and tools to cover the needs of

analysts of movement data. Inventing new data-mining

methods specifically oriented to movement data is one of

the goals of the EU-funded project GeoPKDD.2

SUMMARY

As is evident in the foregoing discussion, numerous tools

are needed to detect patterns of various types in

movement data as well as to relate movement character-

istics and behaviours to other phenomena. Table 3

summarizes what has been suggested here.

This choice of techniques results from a theoretical

analysis and, certainly, will require practical verification.
Implementation of a prototype tool kit for discovering

knowledge from movement data is expected within the

project GeoPKDD.

Conclusion

This article presents an attempt at the systematic design of

a tool kit that could support visual exploration and

analysis of massive collections of movement data. When

data sets are massive, it is not sufficient to use visual

displays alone; rather, it is necessary to involve database

technologies and computational methods of data proces-

sing and analysis. Still, visualization plays a central role,

since it allows the innate perceptual and cognitive

capabilities and background knowledge of a human

analyst to be used in the process of data exploration

and analysis. These capabilities and knowledge cannot be

replaced by purely mechanical processing. Thus, the

combination of visualization with computer operations

offers the opportunity for truly synergetic work between

human and computer.

In order to find out what set of methods and techniques

could appropriately support the work of an analyst with a

large set of movement data, we first considered the general

structure of movement data. On this basis, we defined the

types of patterns that can be detected in movement data

and between movement data and data about other

phenomena. Then we reasoned out what kinds of data

transformations, computations, and visualizations might

allow the analyst to detect these pattern types. We have

not tried to invent any absolutely new visualization or

data-processing techniques but instead have referred to

Figure 8. Three variants of a binned scatter plot summarizing the stork movement data presented in Figure 5.
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Table 3 Computational and visualization techniques for detecting various types of patterns

Pattern Types
Computational or
Database Techniques What Is Visualized Visualization Techniques

Similarity and difference between

IMBs

Clustering on the basis of

various distance

functions

Statistics of movements

within clusters

Density map
Tiered maps representing flows
Histograms; temporally arranged

segmented bars (non-spatial

characteristics)
Data aggregation at

various temporal

granularities

Individual behaviours

included in a cluster

Map with trajectory lines
Animated map
Space–time cube

Constancy, changes, and various

arrangements in the

development of the MCB over

time

Methods for

generalization of

spatial distribution of

points: kriging, etc.

Density surfaces for

different time moments

Animated displays or small

multiples:
� Density map
� Perspective view

Aggregation by spatial

compartments

Various statistics for the

pairs compartment

þ time moment: number

of entities, averaged

characteristics, variance

indicators, etc.

Animated displays or small

multiples:
� Choropleth map
� Map with graduated symbols
� Map with diagrams
� Map with vectors

Statistical aggregation

over the whole set of

entities by time

moments

or intervals

Various overall statistics for

time moments or

intervals

Sequence of histograms, bar

charts, or star diagrams (small

multiples)
Temporally arranged

segmented bars
Computing changes by

spatial compartments

Differences or ratios for the

pairs compartment þ

time moment

Animated maps or small

multiples using a diverging

colour scale to distinguish

between increase and

decrease
Various connectional patterns Database queries

involving movement

data and other types of

data

Subsets of movement data

related in a

specified manner to

other data

Special marking (highlighting)

of graphical elements

corresponding to the selected

data, depending on the type

of display
Dividing movement data

and computing statistics

for the subsets

Statistics of

characteristics by subset

Multiple histograms, bar charts,

or star diagrams
Multiple maps showing

aggregated positions
Links between IMBs and static

properties or activities of

entities

Clustering of IMBs

(see above)

Statistics of static

properties or activities of

entities within clusters

Histograms (numeric properties)
Bar charts, pie charts

(qualitative properties)
Links between movements and

characteristics of the space or

spatial phenomena

Spatial generalization or

aggregation (see above)

Aggregated or generalized

movement data together

with other spatial data

Overlaying two or more

information layers in a map or

perspective view

(animated display or small

multiples)
Presentation of different

information in separate maps
Links between movements and

temporal cycles

Spatial or statistical

generalization or

aggregation (see above)

Movements by time

moments or intervals

Arrangement of small multiples

according to temporal cycles

Links between movements and

events

Times and, possibly,

spatial positions of

events

Including information about

events in various displays as

labels, symbols, marks, etc.
Links between two numeric

(ordered) attributes or between

one such attribute and linear or

cyclical time

Data aggregation by

intervals of attribute

values or time

Counts of occurrences of

value combinations for

each pair of intervals

Binned scatter plot
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existing approaches, techniques, and technologies that can

be quite serviceable if properly integrated and made

accessible to analysts. At present, however, we are not

aware of any existing tool kit that could comprehensively

support visual exploration and analysis of massive sets of

movement data. We hope that this study can provide

useful guidelines for developers of such tool kits.

Moreover, we believe in the usefulness of applying the

systematic approach described in this article to other types

of data.

Still, even a full implementation of the suggested high-

level design would not fully cover the needs of an analyst

of movement data. What is still missing?

When data sets are massive and complex, there is no way

to present them to an analyst in such a way that he or she

can see at once all the potentially relevant patterns that

exist in the data. The analyst must analyse, in the primary

sense of this word (i.e., ‘‘to separate [a material or abstract

entity] into constituent parts or elements,’’ according to

Random House Webster’s Electronic Dictionary and

Thesaurus, v. 1.0). The analyst must look at different

aspects of the dynamic collective behaviour of the moving

entities, decompose it into slices, divide the data into

subsets, and view the data on multiple levels of

aggregation and abstraction. From the examination of

each aspect, slice, subset, or view, the analyst gains some

bit of knowledge that is expected to bring him or her

closer to gaining overall knowledge of the dynamic

collective behaviour and its links to other phenomena.

However, this overall knowledge is merely the arithme-

tical sum of all the bits and pieces obtained by means of

the analysis, as a three-dimensional shape is not merely

the sum of its two-dimensional projections. Overall

knowledge is obtained by means of integrative, synthetic

actions that involve not only building a structure in which

each bit has its proper place but also generalization,

abstraction, induction, and deduction.

Thus, visual analytics consists of analytic and synthetic

activities, while our study has addressed only the analytic

side. It should be admitted that, to the best of our

knowledge, none of the currently existing systems and

tool kits for data exploration and analysis can support

knowledge synthesis, even to a small extent. Moreover,

there is no clear understanding in the research community

of what kind of support is needed or how it could be

provided. It is one of the missions of visual analytics

research to achieve substantial progress in this direction.
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