1,410 research outputs found

    Evidence of secondary relaxations in the dielectric spectra of ionic liquids

    Full text link
    We investigated the dynamics of a series of room temperature ionic liquids based on the same 1-butyl-3-methyl imidazolium cation and different anions by means of broadband dielectric spectroscopy covering 15 decades in frequency (10^(-6)-10^9 Hz), and in the temperature range from 400 K down to 35 K. An ionic conductivity is observed above the glass transition temperature T_{g} with a relaxation in the electric modulus representation. Below T_{g}, two relaxation processes appear, with the same features as the secondary relaxations typically observed in molecular glasses. The activation energy of the secondary processes and their dependence on the anion are different. The slower process shows the characteristics of an intrinsic Johari-Goldstein relaxation, in particular an activation energy E_{beta}=24k_{B}T_{g} is found, as observed in molecular glasses.Comment: Major revision, submitted to Phys. Rev. Let

    Carbon Film in Radio Frequency Surface Plasma Source with Cesiation

    Full text link
    It is assumed that persistent cesiation in the SNS RF SPS is related to deposition of carbon film on the collar converter. The work function dependence for graphite with alkali deposition has no minimum typical for metals and semiconductors and the final work function is higher. For this reason, the probability of H- secondary emission from cesiated metal and semiconductors can be higher than from cesiated carbon films but the carbon film maintains cesiation longer and can operate with low cesium consumption

    Superbase ionic liquids for effective cellulose processing from dissolution to carbonisation

    Get PDF
    This is the author accepted manuscript. The final version is available from Royal Society of Chemistry via the DOI in this recordA range of superbase derived ionic liquids (SILs) was synthesised and characterised. Their ability to dissolve cellulose and the characteristics of the produced fibres were correlated to their specific structural and solvent properties. 17 ionic liquids (ILs) (including 9 novel) were analysed and six ILs were selected to produce fibres: 1-ethyl-3-methylimidazolium acetate [C2C1im][OAc], 1-ethyl-3-methylimidazolium diethyl phosphate [C2C1im][DEP] and the SILs 1-ethyl-1,8-diazabicyclo[5.4.0]undec-7-enium diethylphosphate [DBUEt][DEP], 1,8-diazabicyclo[5.4.0]undec-7-enium acetate [DBUH][OAc], 1,5-diazabicyclo[4.3.0]non-5-enium acetate [DBNH][OAc] and 1-ethyl-1,5-diazabicyclo[4.3.0]non-5-enium diethylphsophate [DBNEt][DEP]. The mechanical properties of these fibres were investigated. The obtained fibres were then carbonised to explore possible application as carbon fibre precursors. The fibres obtained using a mixture of 1,5-diazabicyclo[4.3.0]non-5-enium based SILs with acetate and hexanoate anions (9 : 1), [DBNH][OAc][Hex], showed a promising combination of strength, stiffness and strain at failure values for applications in textiles and fibre reinforcement in renewable composites. Using Raman spectroscopy it is demonstrated that these fibres exhibit a relatively high degree of structural order, with fewer defects than the other materials. On the other hand, analogous fibres based on imidazolium cation with acetate and hexanoate anions (9 : 1), [C2C1im][OAc][Hex] showed a decline in the quality of the produced fibres compared to the fibres produced from [C2C1im][OAc], [C2C1im][DEP] or [DBNH][OAc][Hex].We would like to thank the EPSRC grant number EP/L017679/01 for financial support (AERO RB1717)

    Probing the quantum vacuum with an artificial atom in front of a mirror

    Full text link
    Quantum fluctuations of the vacuum are both a surprising and fundamental phenomenon of nature. Understood as virtual photons flitting in and out of existence, they still have a very real impact, \emph{e.g.}, in the Casimir effects and the lifetimes of atoms. Engineering vacuum fluctuations is therefore becoming increasingly important to emerging technologies. Here, we shape vacuum fluctuations using a "mirror", creating regions in space where they are suppressed. As we then effectively move an artificial atom in and out of these regions, measuring the atomic lifetime tells us the strength of the fluctuations. The weakest fluctuation strength we observe is 0.02 quanta, a factor of 50 below what would be expected without the mirror, demonstrating that we can hide the atom from the vacuum

    Study on Gas Permeation and CO2 Separation through Ionic Liquid Based Membranes with Siloxane-Functionalized Cations

    Get PDF
    This work explores ionic liquid-based membranes with siloxane functionalized cations using two different approaches: supported ionic liquid membranes (SILMs) and poly(ionic liquid)–ionic liquid (PIL–IL) composite membranes. Their CO2, CH4, and N2 permeation properties were measured at T = 293 K with a trans-membrane pressure differential of 100 kPa. The thermophysical properties of the synthesized siloxane-functionalized ILs, namely viscosity and density (data in the Supporting Information), were also determined. Contrary to what was expected, the gas permeation results show that the SILMs containing siloxane-functionalized cations have CO2 permeabilities that are lower than those of their analogues without the siloxane functionality. The addition of siloxane-based ILs into PILs increases both CO2 permeability and CO2/N2 permselectivity, although it does not significantly change the CO2/CH4 permselectivity. The prepared membranes present very diverse CO2 permeabilities, between 57 and 568 Barrer, while they show permselectivities varying from 16.8 to 36.8 for CO2/N2 and from 9.8 to 11.5 for CO2/CH4. As observed for other ILs, superior CO2 separation performances were obtained when the IL containing [C(CN)3]− is used compared to that having the [NTf2]− anion
    • …
    corecore