2,996 research outputs found

    The microbiota of the bilio-pancreatic system: A cohort, STROBE-compliant study

    Get PDF
    Background: The gut microbiota play an essential role in protecting the host against pathogenic microorganisms by modulating immunity and regulating metabolic processes. In response to environmental factors, microbes can hugely alter their metabolism. These factors can substantially impact the host and have potential pathologic implications. Particularly pathogenic microorganisms colonizing pancreas and biliary tract tissues may be involved in chronic inflammation and cancer evolution. Purpose: To evaluate the effect of bile microbiota on survival in patients with pancreas and biliary tract disease (PBD). Patients and Methods: We investigated 152 Italian patients with cholelithiasis (CHL), cholangitis (CHA), cholangiocarcinoma (CCA), gallbladder carcinoma (GBC), pancreas head carcinoma (PHC), ampullary carcinoma (ACA), and chronic pancreatitis (CHP). Demographics, bile cultures, therapy, and survival rates were analyzed in cohorts (T1 death <6 months; T2 death <12 months; T3 death <18 months, T3S alive at 18 months). Results: The most common bacteria in T1 were E. coli, K. pneumoniae, andP. aeruginosa. In T2, the most common bacteria were E. coli and P. aeruginosa. InT3, there were no significant bacteria isolated, while in T3S the most common bacteria were like those found in T1. E. coli and K. pneumoniae were positive predictors of survival for PHC and ACA, respectively. E. coli, K. pneumoniae, andP. aeruginosa showed a high percentage of resistant bacteria to 3CGS, aminoglycosides class, and quinolone group especially at T1 and T2 in cancer patients. Conclusions: An unprecedented increase of E. coli in bile leads to a decrease in survival. We suggest that some strains isolated in bile samples may be considered within the group of risk factors in carcinogenesis and/or progression of hepato-biliary malignancy. A better understanding of bile microbiota in patients with PBD should lead to a multifaceted approach to rapidly detect and treat pathogens before patients enter the surgical setting in tandem with the implementation of the infection control policy

    Mathematical models in nursing research

    Get PDF
    This paper discusses the use of advanced mathematical tools in nursing research, such as mathematical models used in medicine for description and prediction of experimental tumor growth. They are rarely used in nursing research, but fortunately in the last decade, their use is increased, mainly due to artificial intelligence and Big Data, with great benefits for further nursing development. Therefore, a strong interaction between nurses and mathemati-cians is needed to improve nursing research, and consequently, the nurses’ performance in daily work

    Blockade of adenosine A2A receptors prevents protein phosphorylation in the striatum induced by cortical stimulation

    Get PDF
    ©2006 Society for NeurosciencePrevious studies have shown that cortical stimulation selectively activates extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and immediate early gene expression in striatal GABAergic enkephalinergic neurons. In the present study, we demonstrate that blockade of adenosine A2A receptors with caffeine or a selective A2A receptor antagonist counteracts the striatal activation of cAMP– protein kinase A cascade (phosphorylation of the Ser845 residue of the glutamate receptor 1 subunit of the AMPA receptor) and mitogenactivated protein kinase (ERK1/2 phosphorylation) induced by the in vivo stimulation of corticostriatal afferents. The results indicate that A2A receptors strongly modulate the efficacy of glutamatergic synapses on striatal enkephalinergic neurons.This work was supported by the Intramural Research Program of the National Institutes of Health, National Institute on Drug Abuse, Department of Health and Human Services

    On the Geometry and Entropy of Non-Hamiltonian Phase Space

    Full text link
    We analyze the equilibrium statistical mechanics of canonical, non-canonical and non-Hamiltonian equations of motion by throwing light into the peculiar geometric structure of phase space. Some fundamental issues regarding time translation and phase space measure are clarified. In particular, we emphasize that a phase space measure should be defined by means of the Jacobian of the transformation between different types of coordinates since such a determinant is different from zero in the non-canonical case even if the phase space compressibility is null. Instead, the Jacobian determinant associated with phase space flows is unity whenever non-canonical coordinates lead to a vanishing compressibility, so that its use in order to define a measure may not be always correct. To better illustrate this point, we derive a mathematical condition for defining non-Hamiltonian phase space flows with zero compressibility. The Jacobian determinant associated with time evolution in phase space is altogether useful for analyzing time translation invariance. The proper definition of a phase space measure is particularly important when defining the entropy functional in the canonical, non-canonical, and non-Hamiltonian cases. We show how the use of relative entropies can circumvent some subtle problems that are encountered when dealing with continuous probability distributions and phase space measures. Finally, a maximum (relative) entropy principle is formulated for non-canonical and non-Hamiltonian phase space flows.Comment: revised introductio

    Wetting and contact-line effects for spherical and cylindrical droplets on graphene layers: A comparative molecular-dynamics investigation

    Full text link
    In Molecular Dynamics (MD) simulations, interactions between water molecules and graphitic surfaces are often modeled as a simple Lennard-Jones potential between oxygen and carbon atoms. A possible method for tuning this parameter consists of simulating a water nanodroplet on a flat graphitic surface, measuring the equilibrium contact angle, extrapolating it to the limit of a macroscopic droplet and finally matching this quantity to experimental results. Considering recent evidence demonstrating that the contact angle of water on a graphitic plane is much higher than what was previously reported, we estimate the oxygen-carbon interaction for the recent SPC/Fwwater model. Results indicate a value of about 0.2 kJ/mol, much lower than previous estimations. We then perform simulations of cylindrical water filaments on graphitic surfaces, in order to compare and correlate contact angles resulting from these two different systems. Results suggest that modified Young's equation does not describe the relation between contact angle and drop size in the case of extremely small systems and that contributions different from the one deriving from contact line tension should be taken into account.Comment: To be published on Physical Review E (http://pre.aps.org/

    Effects of 6 weeks of traditional resistance training or high intensity interval resistance training on body composition, aerobic power and strength in healthy young subjects: A randomized parallel trial

    Get PDF
    Consistent practice of physical activity has well known positive effects on general health; however, time for exercise remains one major barrier for many. An acute bout of high intensity interval resistance training (HIIRT) increases acute resting energy expenditure (REE) and decreases respiratory ratio (RR), suggesting its potential role on weight loss and increased fatty acid oxidation. The aim of this study was to test the long-term effect of HIIRT on body composition, lipid profile and muscle strength using a randomized parallel trial. Twenty healthy young adults (22.15 ± 1.95 years) were randomized to perform either a HIIRT (N = 11) protocol, consisting of three sets of 6 repetitions at 6 repetition maximum (RM) and then 20 seconds of rest between repetitions until exhaustion repeated for 3 times with 2’30″ rest between sets or a traditional training (TRT, N = 9) protocol of 3 sets of 15 reps with 75 sec of rest between sets. Body composition, resting energy metabolism, aerobic capacity, muscle strength and blood measurements were taken before and after 8 weeks of training. Both protocols enhanced muscle strength, but only HIIRT improved endurance strength performance (+22.07%, p < 0.05) and lean body mass (+2.82%, p < 0.05). REE and RR were unaltered as lipid profile. HIIRT represents a valid training method to improve muscle strength and mass, but its role on body weight control was not confirmed

    Wearable Technologies and AI at the Far Edge for Chronic Heart Failure Prevention and Management: A Systematic Review and Prospects

    Get PDF
    Smart wearable devices enable personalized at-home healthcare by unobtrusively collecting patient health data and facilitating the development of intelligent platforms to support patient care and management. The accurate analysis of data obtained from wearable devices is crucial for interpreting and contextualizing health data and facilitating the reliable diagnosis and management of critical and chronic diseases. The combination of edge computing and artificial intelligence has provided real-time, time-critical, and privacy-preserving data analysis solutions. However, based on the envisioned service, evaluating the additive value of edge intelligence to the overall architecture is essential before implementation. This article aims to comprehensively analyze the current state of the art on smart health infrastructures implementing wearable and AI technologies at the far edge to support patients with chronic heart failure (CHF). In particular, we highlight the contribution of edge intelligence in supporting the integration of wearable devices into IoT-aware technology infrastructures that provide services for patient diagnosis and management. We also offer an in-depth analysis of open challenges and provide potential solutions to facilitate the integration of wearable devices with edge AI solutions to provide innovative technological infrastructures and interactive services for patients and doctors

    Location Based Indoor and Outdoor Lightweight Activity Recognition System

    Get PDF
    In intelligent environments one of the most relevant information that can be gathered about users is their location. Their position can be easily captured without the need for a large infrastructure through devices such as smartphones or smartwatches that we easily carry around in our daily life, providing new opportunities and services in the field of pervasive computing and sensing. Location data can be very useful to infer additional information in some cases such as elderly or sick care, where inferring additional information such as the activities or types of activities they perform can provide daily indicators about their behavior and habits. To do so, we present a system able to infer user activities in indoor and outdoor environments using Global Positioning System (GPS) data together with open data sources such as OpenStreetMaps (OSM) to analyse the user’s daily activities, requiring a minimal infrastructure

    Behavior modeling for a beacon-based indoor location system

    Get PDF
    In this work we performed a comparison between two different approaches to track a person in indoor environments using a locating system based on BLE technology with a smartphone and a smartwatch as monitoring devices. To do so, we provide the system architecture we designed and describe how the different elements of the proposed system interact with each other. Moreover, we have evaluated the system’s performance by computing the mean percentage error in the detection of the indoor position. Finally, we present a novel location prediction system based on neural embeddings, and a soft-attention mechanism, which is able to predict user’s next location with 67% accuracy

    Triple positive breast cancer. A distinct subtype?

    Get PDF
    Breast cancer is a heterogeneous disease, and within the HER-2 positive subtype this is highly exemplified by the presence of substantial phenotypical and clinical heterogeneity, mostly related to hormonal receptor (HR) expression. It is well known how HER-2 positivity is commonly associated with a more aggressive tumor phenotype and decreased overall survival and, moreover, with a reduced benefit from endocrine treatment. Preclinical studies corroborate the role played by functional crosstalks between HER-2 and estrogen receptor (ER) signaling in endocrine resistance and, more recently, the activation of ER signaling is emerging as a possible mechanism of resistance to HER-2 blocking agents. Indeed, HER-2 positive breast cancer heterogeneity has been suggested to underlie the variability of response not only to endocrine treatments, but also to HER-2 blocking agents. Among HER-2 positive tumors, HR status probably defines two distinct subtypes, with dissimilar clinical behavior and different sensitivity to anticancer agents. The triple positive subtype, namely, ER/PgR/Her-2 positive tumors, could be considered the subset which most closely resembles the HER-2 negative/HR positive tumors, with substantial differences in biology and clinical outcome. We argue on whether in this subgroup the "standard" treatment may be considered, in selected cases, i.e., small tumors, low tumor burden, high expression of both hormonal receptors, an overtreatment. This article review the existing literature on biologic and clinical data concerning the HER-2/ER/PgR positive tumors, in an attempt to better define the HER-2 subtypes and to optimize the use of HER-2 targeted agents, chemotherapy and endocrine treatments in the various subsets
    • …
    corecore