692 research outputs found

    Colloidal CuFeS2 Nanocrystals: Intermediate Fe d-Band Leads to High Photothermal Conversion Efficiency

    Get PDF
    We describe the colloidal hot-injection synthesis of phase-pure nanocrystals (NCs) of a highly abundant mineral, chalcopyrite (CuFeS2). Absorption bands centered at around 480 and 950 nm, spanning almost the entire visible and near infrared regions, encompass their optical extinction characteristics. These peaks are ascribable to electronic transitions from the valence band (VB) to the empty intermediate band (IB), located in the fundamental gap and mainly composed of Fe 3d orbitals. Laser-irradiation (at 808 nm) of an aqueous suspension of CuFeS2 NCs exhibited significant heating, with a photothermal conversion efficiency of 49%. Such efficient heating is ascribable to the carrier relaxation within the broad IB band (owing to the indirect VB-IB gap), as corroborated by transient absorption measurements. The intense absorption and high photothermal transduction efficiency (PTE) of these NCs in the so-called biological window (650-900 nm) makes them suitable for photothermal therapy as demonstrated by tumor cell annihilation upon laser irradiation. The otherwise harmless nature of these NCs in dark conditions was confirmed by in vitro toxicity tests on two different cell lines. The presence of the deep Fe levels constituting the IB is the origin of such enhanced PTE, which can be used to design other high performing NC photothermal agents.Comment: 12 pages, Chemistry of Materials, 31-May-201

    The relation between gas density and velocity power spectra in galaxy clusters: qualitative treatment and cosmological simulations

    Full text link
    We address the problem of evaluating the power spectrum of the velocity field of the ICM using only information on the plasma density fluctuations, which can be measured today by Chandra and XMM-Newton observatories. We argue that for relaxed clusters there is a linear relation between the rms density and velocity fluctuations across a range of scales, from the largest ones, where motions are dominated by buoyancy, down to small, turbulent scales: (δρk/ρ)2=η12(V1,k/cs)2(\delta\rho_k/\rho)^2 = \eta_1^2 (V_{1,k}/c_s)^2, where δρk/ρ\delta\rho_k/\rho is the spectral amplitude of the density perturbations at wave number kk, V1,k2=Vk2/3V_{1,k}^2=V_k^2/3 is the mean square component of the velocity field, csc_s is the sound speed, and η1\eta_1 is a dimensionless constant of order unity. Using cosmological simulations of relaxed galaxy clusters, we calibrate this relation and find η11±0.3\eta_1\approx 1 \pm 0.3. We argue that this value is set at large scales by buoyancy physics, while at small scales the density and velocity power spectra are proportional because the former are a passive scalar advected by the latter. This opens an interesting possibility to use gas density power spectra as a proxy for the velocity power spectra in relaxed clusters, across a wide range of scales.Comment: 6 pages, 3 figures, submitted to ApJ Letter

    Analysis of Dictyostelium discoideum Inositol Pyrophosphate Metabolism by Gel Electrophoresis.

    Get PDF
    The social amoeba Dictyostelium discoideum was instrumental in the discovery and early characterization of inositol pyrophosphates, a class of molecules possessing highly-energetic pyrophosphate bonds. Inositol pyrophosphates regulate diverse biological processes and are attracting attention due to their ability to control energy metabolism and insulin signalling. However, inositol pyrophosphate research has been hampered by the lack of simple experimental procedures to study them. The recent development of polyacrylamide gel electrophoresis (PAGE) and simple staining to resolve and detect inositol pyrophosphate species has opened new investigative possibilities. This technology is now commonly applied to study in vitro enzymatic reactions. Here we employ PAGE technology to characterize the D. discoideum inositol pyrophosphate metabolism. Surprisingly, only three major bands are detectable after resolving acidic extract on PAGE. We have demonstrated that these three bands correspond to inositol hexakisphosphate (IP6 or Phytic acid) and its derivative inositol pyrophosphates, IP7 and IP8. Biochemical analyses and genetic evidence were used to establish the genuine inositol phosphate nature of these bands. We also identified IP9 in D. discoideum cells, a molecule so far detected only from in vitro biochemical reactions. Furthermore, we discovered that this amoeba possesses three different inositol pentakisphosphates (IP5) isomers, which are largely metabolised to inositol pyrophosphates. Comparison of PAGE with traditional Sax-HPLC revealed an underestimation of the cellular abundance of inositol pyrophosphates by traditional methods. In fact our study revealed much higher levels of inositol pyrophosphates in D. discoideum in the vegetative state than previously detected. A three-fold increase in IP8 was observed during development of D. discoideum a value lower that previously reported. Analysis of inositol pyrophosphate metabolism using ip6k null amoeba revealed the absence of developmentally-induced synthesis of inositol pyrophosphates, suggesting that the alternative class of enzyme responsible for pyrophosphate synthesis, PP-IP5K, doesn't' play a major role in the IP8 developmental increase

    Meningococcal Carriage in ‘Men Having Sex With Men’ With Pharyngeal Gonorrhoea

    Get PDF
    We assessed the characteristics of Neisseria meningitidis pharyngeal carriage in a cohort of ‘men having sex with men’, including patients with pharyngeal Neisseria gonorrhoeae infection. In the period 2017-2019, among all the oropharyngeal samples tested for gonorrhoea from MSM attending a STI Clinic in Bologna (Italy), we randomly selected 244 N. gonorrhoeae-positive samples and 403 negatives (n=647). Pharyngeal specimens were tested for N. meningitidis presence, by the detection of sodC gene. N. meningitidis-positive samples were further grouped by PCR tests for the major invasive genogroups (i.e., A, B, C, W, and Y). A molecular assay, targeting capsule transporter gene, was used to determine meningococcal capsular status. Overall, 75.8% (491/647) of samples tested positive for sodC gene, indicating a pharyngeal meningococcal carriage. Meningococcal colonisation was significantly more frequent in younger subjects (P=0.009), with no association with HIV infection. Non-groupable meningococci represented most of pharyngeal carriages (about 71%). The commonest N. meningitidis serogroup was B (23.6%), followed by C (2.1%), Y (1.8%) and W (1.1%). Meningococci were often characterized by the genetic potential of capsule production. Interestingly, a negative association between N. meningitidis and N. gonorrhoeae was found: pharyngeal gonorrhoea was significantly more present in patients without meningococcal carriage (P=0.03). Although preliminary, our data added knowledge on the epidemiology of meningococcal carriage in MSM communities at high risk of gonococcal infections, gaining new insights into the interactions/dynamics between N. meningitidis and N. gonorrhoeae

    Cooling in the X-ray halo of the rotating, massive early-type galaxy NGC 7049

    Get PDF
    The relative importance of the physical processes shaping the thermodynamics of the hot gas permeating rotating, massive early-type galaxies is expected to be different from that in non-rotating systems. Here, we report the results of the analysis of XMM-Newton data for the massive, lenticular galaxy NGC 7049. The galaxy harbours a dusty disc of cool gas and is surrounded by an extended hot X-ray emitting gaseous atmosphere with unusually high central entropy. The hot gas in the plane of rotation of the cool dusty disc has a multi-temperature structure, consistent with ongoing cooling. We conclude that the rotational support of the hot gas is likely capable of altering the multiphase condensation regardless of the tcool/tfft_{\rm cool}/t_{\rm ff} ratio, which is here relatively high, 40\sim 40. However, the measured ratio of cooling time and eddy turnover time around unity (CC-ratio 1\approx 1) implies significant condensation, and at the same time, the constrained ratio of rotational velocity and the velocity dispersion (turbulent Taylor number) Tat>1{\rm Ta_t} > 1 indicates that the condensing gas should follow non-radial orbits forming a disc instead of filaments. This is in agreement with hydrodynamical simulations of massive rotating galaxies predicting a similarly extended multiphase disc.Comment: 11 pages, 12 figures, accepted for publication in MNRA

    Radio galaxies in galaxy groups: Kinematics, scaling relations, and AGN feedback

    Get PDF
    We investigate the kinematic properties of a large (N = 998) sample of COSMOS spectroscopic galaxy members distributed among 79 groups. We identify the Brightest Group Galaxies (BGGs) and cross-match our data with the VLA-COSMOS Deep survey at 1.4 GHz, classifying our parent sample into radio/non-radio BGGs and radio/non-radio satellites. The radio luminosity distribution spans from LR2×1021L_R\sim 2\times 10^{21} W Hz1^{-1} to LR3×1025L_R\sim 3\times 10^{25} W Hz1^{-1}. A phase-space analysis, performed by comparing the velocity ratio (line-of-sight velocity divided by the group velocity dispersion) with the galaxy-group centre offset, reveals that BGGs (radio and non-radio) are mostly (\sim80 per cent) ancient infallers. Furthermore, the strongest (LR>1023L_R\gt 10^{23} W Hz1^{-1}) radio galaxies are always found within 0.2RvirR_{\rm vir} from the group centre. Comparing our samples with HORIZON-AGN, we find that the velocities and offsets of simulated galaxies are more similar to radio BGGs than to non-radio BGGs, albeit statistical tests still highlight significant differences between simulated and real objects. We find that radio BGGs are more likely to be hosted in high-mass groups. Finally, we observe correlations between the powers of BGG radio galaxies and the X-ray temperatures, TxT_{\rm x}, and X-ray luminosities, LxL_{\rm x}, of the host groups. This supports the existence of a link between the intragroup medium and the central radio source. The occurrence of powerful radio galaxies at group centres can be explained by Chaotic Cold Accretion, as the AGN can feed from both the galactic and intragroup condensation, leading to the observed positive LRTxL_{\rm R}-T_{\rm x} correlation

    The shape of invasion perclation clusters in random and correlated media

    Full text link
    The shape of two-dimensional invasion percolation clusters are studied numerically for both non-trapping (NTIP) and trapping (TIP) invasion percolation processes. Two different anisotropy quantifiers, the anisotropy parameter and the asphericity are used for probing the degree of anisotropy of clusters. We observe that in spite of the difference in scaling properties of NTIP and TIP, there is no difference in the values of anisotropy quantifiers of these processes. Furthermore, we find that in completely random media, the invasion percolation clusters are on average slightly less isotropic than standard percolation clusters. Introducing isotropic long-range correlations into the media reduces the isotropy of the invasion percolation clusters. The effect is more pronounced for the case of persisting long-range correlations. The implication of boundary conditions on the shape of clusters is another subject of interest. Compared to the case of free boundary conditions, IP clusters of conventional rectangular geometry turn out to be more isotropic. Moreover, we see that in conventional rectangular geometry the NTIP clusters are more isotropic than TIP clusters

    Numerical studies of planar closed random walks

    Full text link
    Lattice numerical simulations for planar closed random walks and their winding sectors are presented. The frontiers of the random walks and of their winding sectors have a Hausdorff dimension dH=4/3d_H=4/3. However, when properly defined by taking into account the inner 0-winding sectors, the frontiers of the random walks have a Hausdorff dimension dH1.77d_H\approx 1.77.Comment: 15 pages, 15 figure

    Diversity of vaginal microbiome and metabolome during genital infections

    Get PDF
    We characterized the vaginal ecosystem during common infections of the female genital tract, as vulvovaginal candidiasis (VVC, n\u2009=\u200918) and Chlamydia trachomatis infection (CT, n\u2009=\u200920), recruiting healthy (HC, n\u2009=\u200921) and bacterial vaginosis-affected (BV, n\u2009=\u200920) women as references of eubiosis and dysbiosis. The profiles of the vaginal microbiome and metabolome were studied in 79 reproductive-aged women, by means of next generation sequencing and proton based-nuclear magnetic resonance spectroscopy. Lactobacillus genus was profoundly depleted in all the genital infections herein considered, and species-level analysis revealed that healthy vaginal microbiome was dominated by L. crispatus. In the shift from HC to CT, VVC, and BV, L. crispatus was progressively replaced by L. iners. CT infection and VVC, as well as BV condition, were mainly characterised by anaerobe genera, e.g. Gardnerella, Prevotella, Megasphaera, Roseburia and Atopobium. The changes in the bacterial communities occurring during the genital infections resulted in significant alterations in the vaginal metabolites composition, being the decrease of lactate a common marker of all the pathological conditions. In conclusion, according to the taxonomic and metabolomics analysis, we found that each of the four conditions is characterized by a peculiar vaginal microbiome/metabolome fingerprint

    Does absorption against AGN reveal supermassive black hole accretion?

    Get PDF
    Galaxies often contain large reservoirs of molecular gas that shape their evolution. This can be through cooling of the gas - which leads to star formation, or accretion on to the central supermassive black hole - which fuels active galactic nucleus (AGN) activity and produces powerful feedback. Molecular gas has been detected in early-type galaxies on scales of just a few tens to hundreds of solar masses by searching for absorption against their compact radio cores. Using this technique, ALMA has found absorption in several brightest cluster galaxies, some of which show molecular gas moving towards their galaxy's core at hundreds of km s-1. In this paper, we constrain the location of this absorbing gas by comparing each galaxy's molecular emission and absorption. In four galaxies, the absorption properties are consistent with chance alignments between the continuum and a fraction of the molecular clouds visible in emission. In four others, the properties of the absorption are inconsistent with this scenario. In these systems, the absorption is likely produced by a separate population of molecular clouds in close proximity to the galaxy core and with high inward velocities and velocity dispersions. We thus deduce the existence of two types of absorber, caused by chance alignments between the radio core and: (i) a fraction of the molecular clouds visible in emission, and (ii) molecular clouds close to the AGN, in the process of accretion. We also present the first ALMA observations of molecular emission in S555, Abell 2390, RXC J1350.3+0940, and RXC J1603.6+1553 - with the latter three having Mmol > 1010 Mθ
    corecore