1,247 research outputs found

    HEAO-A Observatory Description

    Get PDF
    The High Energy Astronomy Observatory Program is briefly described to introduce guest observers to the HEAO-A mission. Topics discussed include spacecraft subsystems, scientific instrumentation, and the mission operations concept. Scientific participants such as principal investigators and co-investigators are listed

    Modulation of macrophage and microglial responses to axonal injury in the peripheral and central nervous systems

    Get PDF
    Journal ArticleOBJECTIVE: After axonal injury, macrophages rapidly infiltrate and become activated in the mammalian peripheral nervous system (PNS) but not the central nervous system (CNS). We used the dorsal root pathway to study factors that modulate the response of macrophages to degenerating axons in both the PNS and the CNS. METHODS: Lewis rats underwent transection of dorsal roots (Group I), stab within the spinal cord (Group II), crush at the dorsal root entry zone (Group III), transection of dorsal roots combined with a CNS lesion (Group IV), or systemic administration of a known activator of macrophages, lipopolysaccharide, alone (Group V) or combined with transection of dorsal roots (Group VI). ED-1 antibody stained for macrophages and activated microglia at 7, 14, and 42 days postinjury. RESULTS: At early time points, Group I demonstrated ED-1 cells in the PNS but not the CNS portion of the degenerating dorsal roots. Group II revealed ED-1 cells near the stab lesion. Group III demonstrated ED-1 cells adjacent to the dorsal root entry zone crush site. Group IV revealed ED-1 cells along both the PNS and the CNS portions of the degenerating dorsal roots when the CNS lesion was placed near the transected roots. Group V demonstrated few ED-1 cells in the PNS and the CNS, whereas Group VI revealed a marked ED-1 cellular response along both the PNS and the CNS portions of the transected dorsal roots. CONCLUSION: Local CNS trauma and systemic administration of lipopolysaccharide can "prime" macrophages/microglia, resulting in an enhanced response to degenerating axons in the CNS. Such priming might prove useful in promoting axonal regeneration

    Cervical end of an occipitocervical fusion: a biomechanical evaluation of 3 constructs

    Get PDF
    Journal ArticleObject. Stabilization with rigid screw/rod fixation is the treatment of choice for craniocervical disorders requiring operative stabilization. The authors compare the relative immediate stiffness for occipital plate fixation in concordance with transarticular screw fixation (TASF), C-1 lateral mass and C-2 pars screw (C1L-C2P), and C-1 lateral mass and C-2 laminar screw (C1L-C2L) constructs, with and without a cross-link. Methods. Ten intact human cadaveric spines (Oc-C4) were prepared and mounted in a 7-axis spine simulator. Each specimen was precycled and then tested in the intact state for flexion/extension, lateral bending, and axial rotation. Motion was tracked using the OptoTRAK 3D tracking system. The specimens were then destabilized and instrumented with an occipital plate and TASF. The spine was tested with and without the addition of a cross-link. The C1L-C2P and C1L-C2L constructs were similarly tested. Results. All constructs demonstrated a significant increase in stiffness after instrumentation. The C1L-C2P construct was equivalent to the TASF in all moments. The C1L-C2L was significantly weaker than the C1L-C2P construct in all moments and significantly weaker than the TASF in lateral bending. The addition of a cross-link made no difference in the stiffness of any construct. Conclusions. All constructs provide significant immediate stability in the destabilized occipitocervical junction. Although the C1L-C2P construct performed best overall, the TASF was similar, and either one can be recommended. Decreased stiffness of the C1L-C2L construct might affect the success of clinical fusion. This construct should be reserved for cases in which anatomy precludes the use of the other two

    Surgical treatment of occipitocervical instability

    Get PDF
    Journal ArticleOBJECTIVE: Instability of the occipitocervical junction can be a challenging surgical problem because of the unique anatomic and biomechanical characteristics of this region. We review the causes of instability and the development of surgical techniques to stabilize the occipitocervical junction. METHODS: Occipitocervical instrumentation has advanced significantly, and modern modular screw-based constructs allow for rigid short-segment fixation of unstable elements while providing the stability needed to achieve successful fusion in nearly 100% of patients. This article reviews the preoperative planning, the variety of instrumentation and surgical strategies, as well as the postoperative care of these patients. RESULTS: Current constructs use occipital plates that are rigidly fixed to the thick midline keel of the occipital bone, polyaxial screws that can be placed in many different trajectories, and rods that are bent to approximate the acute occipitocervical angle. These modular constructs provide a variety of methods to achieve fixation in the atlantoaxial complex, including transarticular screws or C1 lateral mass screws in combination with C2 pars, C2 pedicle, or C2 translaminar trajectories. CONCLUSION: Surgical techniques for occipitocervical instrumentation and fusion are technically challenging and require meticulous preoperative planning and a thorough understanding of the regional anatomy, instrumentation, and constructs. Modern screw-based techniques for occipitocervical fusion have established clinical success and demonstrated biomechanical stability, with fusion rates approaching 100%

    Neighborhood and Individual Level Socioeconomic Variation in Perceptions of Racial Discrimination

    Full text link
    In approaching the study of racial discrimination and health, the neighborhood and individual-level antecedents of perceived discrimination need further exploration. We investigated the relationship between neighborhood and individual-level socioeconomic position (SEP), neighborhood racial composition, and perceived racial discrimination in a cohort of African-American and White women age 40-79 from Connecticut, USA. Design. The logistic regression analysis included 1249 women (39% African- American and 61% White). Neighborhood-level SEP and racial composition were determined using 1990 census tract information. Individual-level SEP indicators included income, education, and occupation. Perceived racial discrimination was measured as lifetime experience in seven situations. Results. For African-American women, living in the most disadvantaged neighborhoods was associated with fewer reports of racial discrimination (odds ratio (OR) 0.44; 95% confidence interval (CI) 0.26, 0.75), with results attenuated after adjustment for individual-level SEP (OR 0.54, CI: 0.29, 1.03), and additional adjustment for neighborhood racial composition (OR 0.70, CI: 0.30, 1.63). African-American women with 12 years of education or less were less likely to report racial discrimination, compared with women with more than 12 years of education (OR 0.57, CI: 0.33, 0.98 (12 years); OR 0.51, CI: 0.26, 0.99 (less than 12 years)) in the fully adjusted model. For White women, neither neighborhood-level SEP nor individual-level SEP was associated with perceived racial discrimination. Conclusion. Individual and neighborhood-level SEP may be important in understanding how racial discrimination is perceived, reported, processed, and how it may influence health. In order to fully assess the role of racism in future studies, inclusion of additional dimensions of discrimination may be warranted

    Is it possible to increase the sustainability of arable and ruminant agriculture by reducing inputs?

    Get PDF
    Until recently, agricultural production was optimised almost exclusively for profit but now farming is under pressure to meet environmental targets. A method is presented and applied for optimising the sustainability of agricultural production systems in terms of both economics and the environment. Components of the agricultural production chain are analysed using environmental life-cycle assessment (LCA) and a financial value attributed to the resources consumed and burden imposed on the environment by agriculture, as well as to the products. The sum of the outputs is weighed against the inputs and the system considered sustainable if the value of the outputs exceeds those of the inputs. If this ratio is plotted against the sum of inputs for all levels of input, a diminishing returns curve should result and the optimum level of sustainability is located at the maximum of the curve. Data were taken from standard economic almanacs and from published LCA reports on the extent of consumption and environmental burdens resulting from farming in the UK. Land-use is valued using the concept of ecosystem services. Our analysis suggests that agricultural systems are sustainable at rates of production close to current levels practiced in the UK. Extensification of farming, which is thought to favour non-food ecosystem services, requires more land to produce the same amount of food. The loss of ecosystem services hitherto provided by natural land brought into production is greater than that which can be provided by land now under extensive farming. This loss of ecosystem service is large in comparison to the benefit of a reduction in emission of nutrients and pesticides. However, food production is essential, so the coupling of subsidies that represent a relatively large component of the economic output in EU farming, with measures to reduce pollution are well-aimed. Measures to ensure that as little extra land is brought into production as possible or that marginal land is allowed to revert to nature would seem to be equally well-aimed, even if this required more intensive use of productive areas. We conclude that current arable farming in the EU is sustainable with either realistic prices for products or some degree of subsidy and that productivity per unit area of land and greenhouse gas emission (subsuming primary energy consumption) are the most important pressures on the sustainability of farming

    Survey Simulations of a New Near-Earth Asteroid Detection System

    Get PDF
    We have carried out simulations to predict the performance of a new space-based telescopic survey operating at thermal infrared wavelengths that seeks to discover and characterize a large fraction of the potentially hazardous near-Earth asteroid (NEA) population. Two potential architectures for the survey were considered: one located at the Earth-Sun L1 Lagrange point, and one in a Venus-trailing orbit. A sample cadence was formulated and tested, allowing for the self-follow-up necessary for objects discovered in the daytime sky on Earth. Synthetic populations of NEAs with sizes >=140 m in effective spherical diameter were simulated using recent determinations of their physical and orbital properties. Estimates of the instrumental sensitivity, integration times, and slew speeds were included for both architectures assuming the properties of new large-format 10 um detector arrays capable of operating at ~35 K. Our simulation included the creation of a preliminary version of a moving object processing pipeline suitable for operating on the trial cadence. We tested this pipeline on a simulated sky populated with astrophysical sources such as stars and galaxies extrapolated from Spitzer and WISE data, the catalog of known minor planets (including Main Belt asteroids, comets, Jovian Trojans, etc.), and the synthetic NEA model. Trial orbits were computed for simulated position-time pairs extracted from the synthetic surveys to verify that the tested cadence would result in orbits suitable for recovering objects at a later time. Our results indicate that the Earth-Sun L1 and Venus-trailing surveys achieve similar levels of integral completeness for potentially hazardous asteroids larger than 140 m; placing the telescope in an interior orbit does not yield an improvement in discovery rates. This work serves as a necessary first step for the detailed planning of a next-generation NEA survey.Comment: AJ accepted; corrected typ

    Preliminary Results from NEOWISE: An Enhancement to the Wide-field Infrared Survey Explorer for Solar System Science

    Get PDF
    The Wide-field Infrared Survey Explorer (WISE) has surveyed the entire sky at four infrared wavelengths with greatly improved sensitivity and spatial resolution compared to its predecessors, the Infrared Astronomical Satellite and the Cosmic Background Explorer. NASA's Planetary Science Division has funded an enhancement to the WISE data processing system called "NEOWISE" that allows detection and archiving of moving objects found in the WISE data. NEOWISE has mined the WISE images for a wide array of small bodies in our solar system, including near-Earth objects (NEOs), Main Belt asteroids, comets, Trojans, and Centaurs. By the end of survey operations in 2011 February, NEOWISE identified over 157,000 asteroids, including more than 500 NEOs and ~120 comets. The NEOWISE data set will enable a panoply of new scientific investigations
    corecore