21,427 research outputs found

    Experimental Study of Electrophoretic Deposited Carbon Nanotubes on Microstrip Transmission Line Resonators and Filters

    Get PDF
    The electrical properties of single-walled carbon nanotube electrophoreses deposition on different types of gold-plated microstrip devices are investigated. Simple transmission lines, transmission line resonators and filters were subjected to deposition of functionalized tubes in an aqueous solution. It is found that the process lowers the resonant frequency of the resonators and filters compared to the untreated devices, at the cost of increased insertion loss and reduced resonator Q-factor

    Existence of Nearest Neighbor and Variable Range Hopping in Pr2_2ZnMnO6_6

    Full text link
    A joint investigation of X-ray diffraction (XRD) pattern and Raman spectrum authenticate the double phase monoclinic P21/n and cubic Fd-3m structures of polycrystalline Pr2ZnMnO6 (PZM). The existence of two different conduction mechanisms (Nearest neighbor hopping and Motts variable range hopping) is observed using a combined study of conductivity, dielectric relaxation and impedance spectra in PZM. This investigation point towards a transition from nearest neighbor hoping to Motts variable range hopping mechanism due to lowering activation energy around 580 K. The charge carriers hopping between the localized acceptor states at the grain boundaries (GBs), which dominants conduction mechanism below 580 K. The ac conductivity, dielectric relaxation, Nyquist plot, and electric modulus highlight the blended effect of grains (Gs) and GBs leads to the charge carrier dynamics in PZM. The dielectric relaxation and modulus formalism are analyzed on the basis of empirical Cole-Cole model. The conduction mechanism is found to be highly correlated with the relaxation mechanism and impedance spectroscopy.Comment: 15 page

    Parallel String Sample Sort

    Get PDF
    We discuss how string sorting algorithms can be parallelized on modern multi-core shared memory machines. As a synthesis of the best sequential string sorting algorithms and successful parallel sorting algorithms for atomic objects, we propose string sample sort. The algorithm makes effective use of the memory hierarchy, uses additional word level parallelism, and largely avoids branch mispredictions. Additionally, we parallelize variants of multikey quicksort and radix sort that are also useful in certain situations.Comment: 34 pages, 7 figures and 12 table

    Thermal Photons and Lepton Pairs from Quark Gluon Plasma and Hot Hadronic Matter

    Get PDF
    The formulation of the real and virtual photon production rate from strongly interacting matter is presented in the framework of finite temperature field theory. The changes in the hadronic spectral function induced by temperature are discussed within the ambit of the Walecka type model, gauged linear and non-linear sigma models, hidden local symmetry approach and QCD sum rule approach. Possibility of observing the direct thermal photon and lepton pair from quark gluon plasma has been contrasted with those from hot hadronic matter with and without medium effects for various mass variation scenarios. At SPS energies, in-medium effects of different magnitude on the hadronic properties for the Walecka model, Brown-Rho scaling and Nambu scaling scenarios are conspicuously visible through the low invariant mass distribution of dilepton and transverse momentum spectra of photon. However, at RHIC energies the thermal photon (dilepton) spectra originating from Quark Gluon Plasma overshines those from hadronic matter for large transverse momentum (invariant mass) irrespective of the models used for evaluating the finite temperature effects on the hadronic properties. It is thus expected that both at RHIC and LHC energies the formation of Quark Gluon Plasma in the initial stages may indeed turn out to be a realistic scenario.Comment: Text revised, 3 figures adde
    corecore