24 research outputs found

    Can the integration of multiple biomarkers and sediment geochemistry aid solving the complexity of sediment risk assessment?: a case study with a benthic fish

    Get PDF
    Surveying toxicity of complex geochemical media as aquatic sediments often yields results that are either difficult to interpret or even contradictory to acknowledged theory. Multi-level biomarkers were investigated in a benthic fish exposed to estuarine sediments through laboratory and in situ bioassays, to evaluate their employment either in ecological risk assessment or in more mechanistic approaches to assess sediment-bound toxicity. Biomarkers reflecting lesions (such as genotoxicity or histopathology), regardless of their low or absent specificity to contaminants, are efficient in segregating exposure to contaminated from uncontaminated sediments even when classical biomarkers like CYP1A and metallothionein induction are inconclusive. Conversely, proteomics and gene transcription analyses provided information on the mechanics of toxicity and aided explaining response variation as a function of metabolic imbalance and impairment of defences against insult. In situ bioassays, although less expedite and more affected by confounding factors, produced data better correlated to overall sediment contamination.info:eu-repo/semantics/publishedVersio

    Estuarine ecological risk based on hepatic histopathological indices from laboratory and in situ tested fish

    Get PDF
    Juvenile Senegalese soles were exposed through 28-day laboratory and field (in situ) bioassays to sediments from three sites of the Sado estuary (W Portugal): a reference and two contaminated by metallic and organic contaminants. Fish were surveyed for ten hepatic histopathological alterations divided by four distinct reaction patterns and integrated through the estimation of individual histopathological condition indices. Fish exposed to contaminated sediments sustained more damage, with especial respect to regressive changes like necrosis. However, differences were observed between laboratory- and fieldexposed animals, with the latest, for instance, exhibiting more pronounced fatty degeneration and hepatocellular eosinophilic alteration. Also, some lesions in fish exposed to the reference sediment indicate that in both assays unaccounted variables produced experimental background noise, such as hyaline degeneration in laboratory-exposed fish. Still, the field assays yielded results that were found to better reflect the overall levels of contaminants and physico-chemical characteristics of the tested sediments.info:eu-repo/semantics/publishedVersio

    Ecological risk assessment of sediment management areas : application to Sado Estuary, Portugal

    Get PDF
    The purpose of this work was to integrate different methodologies to assess the potential ecological risk of estuarine sedimentary management areas, using the Sado Estuary in Portugal as case study. To evaluate the environmental risk of sediment contamination, an integrative and innovative approach was used involving assessment of sediment chemistry, sediment toxicity, benthic community structure, human driving forces and pressures and management areas organic load levels. The basis for decisionmaking for overall assessment was a statistical multivariate analysis appended into a score matrix tables, using a best expert judgment. The integrated approach allowed to identify from the 19 management areas analyzed, three with no risk but other three with high risk to cause adverse effects in the biota, related with the contaminants analyzed. The methodologies used showed to be effective as a support for decision making leading to future estuarine management recommendations.peerreviewe

    Biochemical endpoints on juvenile Solea senegalensis exposed

    Get PDF
    Juvenile Solea senegalensis were exposed to fresh sediments from three stations of the Sado estuary (Portugal) in 28-day laboratory assays. Sediments revealed distinct levels of total organic matter, fine fraction, redox potential, trace elements (arsenic, cadmium, chromium, copper, nickel, lead and zinc) and organic contaminants (polycyclic aromatic hydrocarbons, polychlorinated biphenyls and a pesticide: dichloro diphenyl trichloroethane). Organisms were surveyed for contaminant bioaccumulation and induction of two hepatic biochemical biomarkers: metallothionein (MT) and cytochrome P450 (CYP1A), as potential indicators of exposure to metallic and organic contaminants, respectively. Using an integrative approach it was established that, although bioaccumulation is in general accordance with sediment contamination, lethality and biomarker responses are not linearly dependent of the cumulative concentrations of sediment contaminants but rather of their bioavailability and synergistic effects in organisms. It is concluded that metals and organic contaminants modulate both MT and CYP1A induction and it is suggested that reactive oxygen species may be the link between responses and effects of toxicity.peerreviewe

    Genotoxic damage in Solea senegalensis exposed to sediments from the Sado Estuary (Portugal): effects of metallic and organic contaminants

    Get PDF
    Juvenile Solea senegalensis (Senegalese sole) were exposed to freshly collected sediments from three sites of the Sado Estuary (West-Portuguese coast) in 28-day laboratory assays in order to assess the ecological risk from sediment contaminants, by measuring two genotoxicity biomarkers in peripheral blood: the percentage of Erythrocyte Nuclear Abnormalities (ENA) by use of an adaptation of the micronucleus test, and the percentage of DNA strand-breakage (DNA-SB) with the Comet assay. Sediments were surveyed for metallic (Cr, Ni, Cu, Zn, As, Cd and Pb) and organic (PAHs (polycyclic aromatic hydrocarbons), PCBs (polychlorinated biphenyls) and DDTs (dichloro-diphenyl-trichloroethane)) contaminants. Sediments from site A (farthest from hotspots of contamination) were found to be the least contaminated and weaker inducers of genotoxic damage, whereas sediments from sites B (urban influence) and C (affected by industrial effluents and agricultural runoffs) were responsible for a very significant increase in both ENA and DNA-SB, site B being most contaminated with metals and site C mainly with organic pollutants, especially PAHs and PCBs . Analysis of genotoxic effects showed a strong correlation between the concentrations of PAHs and PCBs and both biomarkers at sampling times T14 and T28, while the amounts of Cu, As, Cd and Pb were less strongly correlated, and at T28 only, with ENA and DNA-SB. These results show that organic contaminants in sediment are stronger and faster acting genotoxic stressors. The results also suggest that metals may have an inhibitory effect on genotoxicity when interacting with organic contaminants, at least during early exposure. ENA and DNA-SB do not show a linear relationship, but a strong correlation exists between the overall increase in genotoxicity caused by exposure to sediment, confirming that they are different, and possibly non-linked effects that respond similarly to exposure. Although the Comet assay showed enhanced sensitivity, the two analyses are complementary and suitable for the biomonitoring of sediment contaminants in a benthic species like S. senegalensis.info:eu-repo/semantics/publishedVersio

    Assessment of the genotoxic potential of contaminated estuarine sediments in fish peripheral blood: laboratory versus in situ studies

    Get PDF
    Juvenile Senegalese soles (Solea senegalensis) were exposed to estuarine sediments through 28-day laboratory and in situ (field) bioassays. The sediments, collected from three distinct sites (a reference plus two contaminated) of the Sado Estuary (W Portugal) were characterized for total organic matter, redox potential, fine fraction and for the levels of metals, polycyclic aromatic hydrocarbons (PAHs) and organochlorines, namely polychlorinated biphenyls (PCBs) and dichloro diphenyl tricholoethane plus its main metabolites (DDTs). Genotoxicity was determined in whole peripheral blood by the single-cell gel electrophoresis (SCGE or ‘‘comet’’) assay and by scoring erythrocytic nuclear abnormalities (ENA). Analysis was complemented with the determination of lipid peroxidation in blood plasma by the thiobarbituric acid reactive substances (TBARS) protocol and cell type sorting. The results showed that exposure to contaminated sediments induced DNA fragmentation and clastogenesis. Still, laboratory exposure to the most contaminated sediment revealed a possible antagonistic effect between metallic and organic contaminants that might have been enhanced by increased bioavailability. The laboratory assay caused a more pronounced increase in ENA whereas a very significant increase in DNA fragmentation was observed in field-tested fish exposed to the reference sediment, which is likely linked to increased lipid peroxidation that probably occurred due to impaired access to food. Influence of natural pathogens was ruled out by unaltered leukocyte counts. The statistical integration of data correlated lipid peroxidation with biological variables such as fish length and weight, whereas the genotoxicity biomarkers were more correlated to sediment contamination. It was demonstrated that laboratory and field bioassays for the risk assessment of sediment contamination may yield different genotoxicity profiles although both provided results that are in overall accordance with sediment contamination levels. While field assays may provide more ecologically relevant data, the multiple environmental variables may produce sufficient background noise to mask the true effects of contamination.info:eu-repo/semantics/publishedVersio

    Histological biomarkers in liver and gills of juvenile Solea senegalensis exposed

    Get PDF
    Young juvenile Solea senegalensis were exposed to three sediments with distinct contamination profiles collected from a Portuguese estuary subjected to anthropogenic sources of contamination (the Sado estuary, western Portugal). Sedimentswere surveyed formetals (cadmium, chromium, copper, nickel, lead and zinc), ametalloid (arsenic) and organic contaminants (polycyclic aromatic hydrocarbons, polychlorinated biphenyls and a pesticide, dichloro-diphenyl-trichloroethane plus itsmetabolites), aswell as total organic matter, redox potential and particle fine fraction. The fish were exposed to freshly collected sediments in a 28-day laboratorial assay and collected for histological analyses at days 0 (T0), 14 (T14) and 28 (T28). Individual weighted histopathological indices were obtained, based on presence/absence data of eight and nine liver and gill pathologies, respectively, and on their biological significance. Although livers sustained more severe lesions, the sediments essentially contaminated by organic substances caused more damage to both organs than the sediments contaminated by both metallic and organic contaminants, suggesting a possible synergistic effect. Correlation analyses showed that some alterations are linked, forming distinctive histopathological patterns that are in accordance with the severity of lesions and sediment characteristics. The presence of large eosinophilic bodies in liver and degeneration of mucous cells in gills (a first-time described alteration)were some of the most noticeable alterations observed and were related to sediment organic contaminants. Body size has been found to be negatively correlated with histopathological damage in livers following longer term exposures. It is concluded that histopathological indices provide reliable and discriminatory data even when biomonitoring as complex media as natural sediments. It is also concluded that the effects of contamination may result not only from toxicant concentrations but also from their interactions, relative potency and sediment characteristics that ultimately determine bioavailability.peerreviewe

    A description of chloride cell and kidney tubule alterations in the flatfish Solea senegalensis exposed to moderately contaminated sediments from the Sado estuary (Portugal)

    Get PDF
    The effects of sediment-bound contaminants on kidney and gill chloride cells were surveyed in juvenile Solea senegalensis exposed to fresh sediments collected from three distinct sites of the Sado Estuary (Portugal) in a 28-day laboratorial assay. Sediments were analyzed for metallic contaminants, polycyclic aromatic hydrocarbons and organochlorines as well as for total organic matter, redox potential and fine fraction. The potential for causing adverse biological effects of each surveyed sediment was assessed by comparison of contaminant levels to available guidelines for coastal sediments, namely the Threshold Effects Level (TEL) and the Probable Effects Level (PEL). The Sediment Quality Guideline Quotient indices (SQGQ) were calculated to compare the overall contamination levels of the three stations. A qualitative approach was employed to analyze the histo/cytopathological traits in gill chloride cells and body kidney of fish exposed to each tested sediment for 0, 14 and 28 days. The results showed that sediment contamination can be considered low to moderate and that the least contaminated sediment (from a reference site, with the lowest SQGQ) caused lesser changes in the surveyed organs. However, the most contaminated sediment (by both metallic and organic xenobiotics, with highest SQGQ) was neither responsible for the highest mortality nor for the most pronounced lesions. Exposure to the sediment presenting an intermediate SQGQ, essentially contaminated by organic compounds, caused the highest mortality (48%) and the most severe damage to kidneys, up to full renal necrosis. Chloride cell alterations were similar in fish exposed to the two most contaminated sediments and consisted of a pronounced cellular hypertrophy, likely involving fluid retention and loss of mitochondria. It can be concluded that sediment contamination considered to be low or moderate may be responsible for severe injury to cells and parenchyma involved in the maintenance of osmotic balance, contributing for the high mortality levels observed. The results suggest that sediment-bound organic contaminants such as PAHs (polycyclic aromatic hydrocarbons) and PCBs (polychlorinated biphenyls) may be very toxic to the analyzed organs, especially the kidney, even when present in lowrisk concentrations.info:eu-repo/semantics/publishedVersio

    Hepatic proteome changes in solea senegalensis exposed to contaminated estuarine sediments: a laboratory and in situ survey

    Get PDF
    Assessing toxicity of contaminated estuarine sediments poses a challenge to ecotoxicologists due to the complex geochemical nature of sediments and to the combination of multiple classes of toxicants. Juvenile Senegalese soles were exposed for 14 days in the laboratory and in situ (field) to sediments from three sites (a reference plus two contaminated) of a Portuguese estuary. Sediment characterization confirmed the combination of metals, polycyclic aromatic hydrocarbons and organochlorines in the two contaminated sediments. Changes in liver cytosolic protein regulation patterns were determined by a combination of two-dimensional electrophoresis with de novo sequencing by tandem mass spectrometry. From the forty-one cytosolic proteins found to be deregulated, nineteen were able to be identified, taking part in multiple cellular processes such as anti-oxidative defence, energy production, proteolysis and contaminant catabolism (especially oxidoreductase enzymes). Besides a clear distinction between animals exposed to the reference and contaminated sediments, differences were also observed between laboratory- and in situ-tested fish. Soles exposed in the laboratory to the contaminated sediments failed to induce, or even markedly down-regulated, many proteins, with the exception of a peroxiredoxin (an anti-oxidant enzyme) and a few others, when compared to reference fish. In situ exposure to the contaminated sediments revealed significant up-regulation of basal metabolism-related enzymes, comparatively to the reference condition. Down-regulation of basal metabolism enzymes, related to energy production and gene transcription, in fish exposed in the laboratory to the contaminated sediments, may be linked to sedimentbound contaminants and likely compromised the organisms’ ability to deploy adequate responses against insult.info:eu-repo/semantics/publishedVersio

    Metal Pollution and Mining in the Iberian Pyrite Belt: New Remediation Technologies to Improve the Ecosystem Services of the River Basins

    No full text
    The highly metal-contaminated Odiel-Tinto River basin, located in the Iberian Pyrite Belt (IPB), has been the focus of many environmental studies as a natural lab for biodiversity and environmentally catastrophic scenarios and as a reference site for mining places with similar conditions. This study demonstrates the feasibility and effectiveness of two different technologies to recover ecosystems affected by acid mine drainage (AMD) in the area of IPB. The current study compiles results of two newest technologies for AMD remediation: passive remediation (dispersed alkaline substrate—DAS) and a new disruptive technology (Adiabatic Sonic Evaporation and Crystallization—ASE&C) that purifies the contaminated water, obtaining two by-products (high-quality water and metal conglomerates) that improve the general quality of the ecosystem including biodiversity by eliminating more than 90% of the contaminants from AMD and mining waters. The removal of contaminants, enhancement of AMD treatment efficiency, and offset operating costs were compared and analyzed for the different uses of the decontaminated effluents, including an old tailing pond failure, the Aznalcóllar mining spill. The efficiency of the removal of elements from the contaminated water is significant using both technologies, although the passive DAS does not still reach the international benchmark for some compounds (such as Fe, sulfates, and Mn); whereas ASE&C obtains distilled water fulfilling all the international benchmarks with conductivity values lower than 120 µS cm−1 or metal concentrations lower than µg/L. Both technologies are eco-friendly and cost-effective as a result of the generation of valuable by-products such as fresh water and metal conglomerates as potentially commercial products while remediating aquatic ecosystems impacted by mining activities
    corecore