29,675 research outputs found

    Data catalog series for space science and applications flight missions. Volume 4A: Descriptions of meteorological and terrestrial applications spacecraft and investigations

    Get PDF
    The National Space Science Data Center (NSSDC) provides data from and information about space science and applications flight investigations in support of additional studies beyond those performed as the principal part of any flight mission. The Earth-orbiting spacecraft for investigations of the earth and its atmosphere is discussed. Geodetic tracking data are included in this category. The principal subject areas presented are meteorology and earth resources survey, and the spacecraft selection is made according to those subjects. All experiments on board the spacecraft are described. No attempt is made to reference investigations that are related to the above disciplines, but that are described in other volumes of this series

    From computation to black holes and space-time foam

    Get PDF
    We show that quantum mechanics and general relativity limit the speed ν~\tilde{\nu} of a simple computer (such as a black hole) and its memory space II to \tilde{\nu}^2 I^{-1} \lsim t_P^{-2}, where tPt_P is the Planck time. We also show that the life-time of a simple clock and its precision are similarly limited. These bounds and the holographic bound originate from the same physics that governs the quantum fluctuations of space-time. We further show that these physical bounds are realized for black holes, yielding the correct Hawking black hole lifetime, and that space-time undergoes much larger quantum fluctuations than conventional wisdom claims -- almost within range of detection with modern gravitational-wave interferometers.Comment: A misidentification of computer speeds is corrected. Our results for black hole computation now agree with those given by S. Lloyd. All other conclusions remain unchange

    Prediction of Orbital Ordering in Single-Layered Ruthenates

    Full text link
    The key role of the orbital degree of freedom to understand the magnetic properties of layered ruthenates is here discussed. In the G-type antiferromagnetic phase of Ca2_2RuO4_4, recent X-ray experiments reported the presence of 0.5 hole per site in the dxyd_{xy} orbital, while the dyzd_{\rm yz} and dzxd_{zx} orbitals contain 1.5 holes. This unexpected t2gt_{2g} hole distribution is explained by a novel state with orbital ordering (OO), stabilized by a combination of Coulomb interactions and lattice distortions. In addition, the rich phase diagram presented here suggests the possibility of large magnetoresistance effects, and predicts a new ferromagnetic OO phase in ruthenates.Comment: 4 pages, Revtex, with 2 figures embedded in the text. Submitted to Phys. Rev. Let

    Radio Polarization Observations of the Snail: A Crushed Pulsar Wind Nebula in G327.1-1.1 with a Highly Ordered Magnetic Field

    Get PDF
    Pulsar wind nebulae (PWNe) are suggested to be acceleration sites of cosmic rays in the Galaxy. While the magnetic field plays an important role in the acceleration process, previous observations of magnetic field configurations of PWNe are rare, particularly for evolved systems. We present a radio polarization study of the "Snail" PWN inside the supernova remnant G327.1-1.1 using the Australia Telescope Compact Array. This PWN is believed to have been recently crushed by the supernova (SN) reverse shock. The radio morphology is composed of a main circular body with a finger-like protrusion. We detected a strong linear polarization signal from the emission, which reflects a highly ordered magnetic field in the PWN and is in contrast to the turbulent environment with a tangled magnetic field generally expected from hydrodynamical simulations. This could suggest that the characteristic turbulence scale is larger than the radio beam size. We built a toy model to explore this possibility, and found that a simulated PWN with a turbulence scale of about one-eighth to one-sixth of the nebula radius and a pulsar wind filling factor of 50--75% provides the best match to observations. This implies substantial mixing between the SN ejecta and pulsar wind material in this system.Comment: 13 pages, 10 figures, Accepted for publication in Ap
    • …
    corecore