44,309 research outputs found

    Power-law Behavior of High Energy String Scatterings in Compact Spaces

    Full text link
    We calculate high energy massive scattering amplitudes of closed bosonic string compactified on the torus. We obtain infinite linear relations among high energy scattering amplitudes. For some kinematic regimes, we discover that some linear relations break down and, simultaneously, the amplitudes enhance to power-law behavior due to the space-time T-duality symmetry in the compact direction. This result is consistent with the coexistence of the linear relations and the softer exponential fall-off behavior of high energy string scattering amplitudes as we pointed out prevously. It is also reminiscent of hard (power-law) string scatterings in warped spacetime proposed by Polchinski and Strassler.Comment: 6 pages, no figure. Talk presented by Jen-Chi Lee at Europhysics Conference (EPS2007), Manchester, England, July 19-25, 2007. To be published by Journal of Physics: Conference Series

    Range-Free Localization with the Radical Line

    Full text link
    Due to hardware and computational constraints, wireless sensor networks (WSNs) normally do not take measurements of time-of-arrival or time-difference-of-arrival for rangebased localization. Instead, WSNs in some applications use rangefree localization for simple but less accurate determination of sensor positions. A well-known algorithm for this purpose is the centroid algorithm. This paper presents a range-free localization technique based on the radical line of intersecting circles. This technique provides greater accuracy than the centroid algorithm, at the expense of a slight increase in computational load. Simulation results show that for the scenarios studied, the radical line method can give an approximately 2 to 30% increase in accuracy over the centroid algorithm, depending on whether or not the anchors have identical ranges, and on the value of DOI.Comment: Proc. IEEE ICC'10, Cape Town, South Africa, May, 201

    Optimisation of direct expansion (DX) cooling coils aiming to building energy efficiency

    Get PDF
    Efficient Air Conditioning (A/C) system is the key to reducing energy consumption in building operation. In order to decrease the energy consumption in an A/C system, a method to calculate the optimal tube row number of a direct expansion (DX) cooling coil for minimizing the entropy generation in the DX cooling which functioned as evaporator in the A/C system was developed. The optimal tube row numbers were determined based on the entropy generation minimization (EGM) approach. Parametric studies were conducted to demonstrate the application of the analytical calculation method. Optimal tube row number for different air mass flow rates, inlet air temperatures and sensible cooling loads were investigated. It was found that the optimal tube row number of a DX cooling coil was in the range of 5 - 9 under normal operating conditions. The optimal tube row number was less when the mass flow rate and inlet air temperature were increased. The tube row number increased when the sensible cooling load was increased. The exergy loss when using a non-optimal and optimal tube row numbers was compared to show the advantage of using the optimal tube row number. The decrease of exery loss ranged from around 24% to 70%. Therefore the new analytical method developed in this paper offers a good practice guide for the design of DX cooling coils for energy conservation

    Advanced aeroservoelastic stabilization techniques for hypersonic flight vehicles

    Get PDF
    Advanced high performance vehicles, including Single-Stage-To-Orbit (SSTO) hypersonic flight vehicles, that are statically unstable, require higher bandwidth flight control systems to compensate for the instability resulting in interactions between the flight control system, the engine/propulsion dynamics, and the low frequency structural modes. Military specifications, such as MIL-F-9490D and MIL-F-87242, tend to limit treatment of structural modes to conventional gain stabilization techniques. The conventional gain stabilization techniques, however, introduce low frequency effective time delays which can be troublesome from a flying qualities standpoint. These time delays can be alleviated by appropriate blending of gain and phase stabilization techniques (referred to as Hybrid Phase Stabilization or HPS) for the low frequency structural modes. The potential of using HPS for compensating structural mode interaction was previously explored. It was shown that effective time delay was significantly reduced with the use of HPS; however, the HPS design was seen to have greater residual response than a conventional gain stablized design. Additional work performed to advance and refine the HPS design procedure, to further develop residual response metrics as a basis for alternative structural stability specifications, and to develop strategies for validating HPS design and specification concepts in manned simulation is presented. Stabilization design sensitivity to structural uncertainties and aircraft-centered requirements are also assessed
    • …
    corecore