3,463 research outputs found
An experimental investigation on the subcritical instability in plane Poieseuille flow
The relationship between the three dimensional properties of the fundamental flow of a plane Poieseuille flow and subcritical stability was studied. An S-T wave was introduced into the flow and the three dimensional development of the wave observed. Results indicate that: (1) the T-S wave has three dimensional properties which are synchronous with the fundamental flow, but there is damping at microamplitude; (2) when the amplitude reaches a certain threshold, subcritical instability and peak valley bifurcation occur simultaneously and a peak valley structure is formed; (3) this threshold depends to a great extent on the frequency; and (4) after the peak valley bifurcation there is a transition to a turbulent flow by the process of laminar flow collapse identical to that in Blasius flow
Disturbances of both cometary and Earth's magnetospheres excited by single solar flares
In the solar wind a comet plays the role of a windvane that moves three-dimensionally in the heliomagnetosphere. Among the solar systems bodies, only comets have a wide range of inclination angles of their orbital planes to the ecliptic plane ranging from 0 to 90 deg. Therefore, observations of cometary plasma tails are useful in probing the heliomagnetospheric conditions in the high heliolatitudinal region. A comet can be compared to a polar-orbiting probe encircling the Sun. We will introduce two rare cases in which the magnetospheres of both the comet and the Earth are disturbed by a single solar flare
Fast scintillation counter system and performance
An experimental study of the fast scintillation counter (FS) system to observe a shower disk structure at Mt. Norikura is described, especially the system performance and a pulse wave-form by a single charge particles. The photomultiplier tube (PT) pulse appears at the leading edge of the main pulse. To remove this PT-pulse from the main pulse, the frame of the scintillator vessel was changed. The fast triggering system was made to decrease the dead time which came from the use of the function of the self triggering of the storage oscilloscope (OSC). To provide a new field on the multi-parameter study of the cosmic ray showers, the system response of the FS system also improved as a result of many considerations
The structure of the shower disk observed at Mt. Norikura
The structure of the EAS shower disk, the arrival time distribution of charged particles at the core of the small or middle size shower, is measured at Mt. Norikura in Japan. Four fast scintillation counters with an area of 0.25 sq m and a fast trigger system are added to the Mt. Norikura EAS array for the study
Novel phase transition and the pressure effect in YbFe2Al10-type CeT2Al10 (T=Fe, Ru, Os)
We have succeeded in growing single crystals of orthorhombic CeT2Al10 (T=Fe,
Ru, Os) by Al self-flux method for the first time, and measured the electrical
resistivity at pressures up to 8 GPa, the magnetic susceptibility and specific
heat at ambient pressure. These results indicate that CeT2Al10 belongs to the
heavy fermion compounds. CeRu2Al10 and CeOs2Al10 show a similar phase
transition at T0 = 27.3 and 28.7 K, respectively. The temperature dependences
in the ordered phases are well described by the thermally activated form,
suggesting that partial gap opens over the Fermi surfaces below T0. When
pressure is applied to CeRu2Al10, T0 disappears suddenly between 3 and 4 GPa,
and CeRu2Al10 turns into a Kondo insulator, followed by a metal. The similarity
of CeT2Al10 under respective pressures suggests a scaling relation by some
parameter controlling the unusual physics in these compounds.Comment: 9 pages, 5 figure
Nonlinear Evolution of Very Small Scale Cosmological Baryon Perturbations at Recombination
The evolution of baryon density perturbations on very small scales is
investigated. In particular, the nonlinear growth induced by the radiation drag
force from the shear velocity field on larger scales during the recombination
epoch, which is originally proposed by Shaviv in 1998, is studied in detail. It
is found that inclusion of the diffusion term which Shaviv neglected in his
analysis results in rather mild growth whose growth rate is instead
of enormous amplification of Shaviv's original claim since the
diffusion suppresses the growth. The growth factor strongly depends on the
amplitude of the large scale velocity field. The nonlinear growth mechanism is
applied to density perturbations of general adiabatic cold dark matter (CDM)
models. In these models, it has been found in the previous works that the
baryon density perturbations are not completely erased by diffusion damping if
there exists gravitational potential of CDM. With employing the perturbed rate
equation which is derived in this paper, the nonlinear evolution of baryon
density perturbations is investigated. It is found that: (1) The nonlinear
growth is larger for smaller scales. This mechanism only affects the
perturbations whose scales are smaller than , which are
coincident with the stellar scales. (2) The maximum growth factors of baryon
density fluctuations for various COBE normalized CDM models are typically less
than factor 10 for large scale velocity peaks. (3) The growth factor
depends on .Comment: 24 pages, 9 figures, submitted to Ap
CTAD as a universal anticoagulant
The feasibility of CTAD (a mixture of citrate, theophylline, adenosine and dipyridamole) as a new anticoagulant for medical laboratory use was studied prospectively. Whole blood anticoagulated with CTAD exhibited results very similar to those of blood anticoagulated with EDTA on complete blood count and automated white cell differential except for a slight decrease in platelet count and mean platelet volume. Chemistry test data for plasma obtained from CTAD whole blood were close to those obtained for matched sera. Among coagulation tests, prothrombin time, activated partial thromboplastin time and fibrinogen concentrations were close to those obtained with citrate plasma. Based on the results, CTAD was judged to be a good candidate as a new anticoagulant
Redshift-space Distortions of the Power Spectrum of Cosmological Objects on a Light Cone : Explicit Formulations and Theoretical Implications
We examine the effects of the linear and the cosmological redshift-space
distortions on the power spectrum of cosmological objects on a light cone. We
develop theoretical formulae for the power spectrum in linear theory of density
perturbations in a rigorous manner starting from first principle corresponding
to Fourier analysis. Approximate formulae, which are useful properly to
incorporate the redshift-space distortion effects into the power spectrum are
derived, and the validity is examined. Applying our formulae to galaxy and
quasar samples which roughly match the SDSS survey, we will show how the
redshift-space distortions distort the power spectrum on the light cone
quantitatively.Comment: 30 pages, Accepted for publication in the Astrophysical Journal
Supplement Serie
- …