102,703 research outputs found
Coding for reliable satellite communications
This research project was set up to study various kinds of coding techniques for error control in satellite and space communications for NASA Goddard Space Flight Center. During the project period, researchers investigated the following areas: (1) decoding of Reed-Solomon codes in terms of dual basis; (2) concatenated and cascaded error control coding schemes for satellite and space communications; (3) use of hybrid coding schemes (error correction and detection incorporated with retransmission) to improve system reliability and throughput in satellite communications; (4) good codes for simultaneous error correction and error detection, and (5) error control techniques for ring and star networks
On the Tidal Dissipation of Obliquity
We investigate tidal dissipation of obliquity in hot Jupiters. Assuming an
initial random orientation of obliquity and parameters relevant to the observed
population, the obliquity of hot Jupiters does not evolve to purely aligned
systems. In fact, the obliquity evolves to either prograde, retrograde or
90^{o} orbits where the torque due to tidal perturbations vanishes. This
distribution is incompatible with observations which show that hot jupiters
around cool stars are generally aligned. This calls into question the viability
of tidal dissipation as the mechanism for obliquity alignment of hot Jupiters
around cool stars.Comment: 6 pages, 4 figures, accepted at ApJ
In-Plane Spectral Weight Shift of Charge Carriers in
The temperature dependent redistribution of the spectral weight of the
plane derived conduction band of the high
temperature superconductor (T_c = 92.7 K) was studied with wide-band (from 0.01
to 5.6 eV) spectroscopic ellipsometry. A superconductivity - induced transfer
of the spectral weight involving a high energy scale in excess of 1 eV was
observed. Correspondingly, the charge carrier spectral weight was shown to
decrease in the superconducting state. The ellipsometric data also provide
detailed information about the evolution of the optical self-energy in the
normal and superconducting states
Internal Gravity Waves Modulate the Apparent Misalignment of Exoplanets around Hot Stars
We propose that the observed misalignment between extra-solar planets and
their hot host stars can be explained by angular momentum transport within the
host star. Observations have shown that this misalignment is preferentially
around hot stars, which have convective cores and extended radiative envelopes.
This situation is amenable to substantial angular momentum transport by
internal gravity waves (IGW) generated at the convective-radiative interface.
Here we present numerical simulations of this process and show that IGW can
modulate the surface rotation of the star. With these two- dimensional
simulations we show that IGW could explain the retrograde orbits observed in
systems such as HAT-P-6 and HAT-P-7, however, extension to high obliquity
objects will await future three- dimensional simulations. We note that these
results also imply that individual massive stars should show temporal
variations in their v sini measurements.Comment: 6 pages, 2 figures, Accepted for publication in ApJ
Intrinsic Josephson Effects in the Magnetic Superconductor RuSr2GdCu2O8
We have measured interlayer current transport in small sized RuSr2GdCu2O8
single crystals. We find a clear intrinsic Josephson effect showing that the
material acts as a natural
superconductor-insulator-ferromagnet-insulator-superconductor superlattice. So
far, we detected no unconventional behavior due to the magnetism of the RuO2
layers.Comment: 4 pages, 5 figures, to appear in Phys. Rev. Let
Toward a Deterministic Model of Planetary Formation IV: Effects of Type-I Migration
In a further development of a deterministic planet-formation model (Ida & Lin
2004), we consider the effect of type-I migration of protoplanetary embryos due
to their tidal interaction with their nascent disks. During the early embedded
phase of protostellar disks, although embryos rapidly emerge in regions
interior to the ice line, uninhibited type-I migration leads to their efficient
self-clearing. But, embryos continue to form from residual planetesimals at
increasingly large radii, repeatedly migrate inward, and provide a main channel
of heavy element accretion onto their host stars. During the advanced stages of
disk evolution (a few Myr), the gas surface density declines to values
comparable to or smaller than that of the minimum mass nebula model and type-I
migration is no longer an effective disruption mechanism for mars-mass embryos.
Over wide ranges of initial disk surface densities and type-I migration
efficiency, the surviving population of embryos interior to the ice line has a
total mass several times that of the Earth. With this reservoir, there is an
adequate inventory of residual embryos to subsequently assemble into rocky
planets similar to those around the Sun. But, the onset of efficient gas
accretion requires the emergence and retention of cores, more massive than a
few M_earth, prior to the severe depletion of the disk gas. The formation
probability of gas giant planets and hence the predicted mass and semimajor
axis distributions of extrasolar gas giants are sensitively determined by the
strength of type-I migration. We suggest that the observed fraction of
solar-type stars with gas giant planets can be reproduced only if the actual
type-I migration time scale is an order of magnitude longer than that deduced
from linear theories.Comment: 32 pages, 8 figures, 1 table, accepted for publication in Ap
Anomalous oxygen isotope effect on the in-plane FIR conductivity of detwinned YBa2Cu3O
We observe an anomalous oxygen isotope effect on the a-axis component of the
far-infrared electronic response of detwinned YBa2Cu3O. For
O a pronounced low-energy electronic mode (LEM) appears around 240
cm. This a-axis LEM exhibits a clear aging effect, after one year it is
shifted to 190 cm. For O we cannot resolve a corresponding a-axis
LEM above 120 cm. We interpret the LEM in terms of a collective
electronic mode that is pinned by `isotopic defects', i.e. by the residual
O in the matrix of O.Comment: 10 pages, 2 figure
Novel Si(1-x)Ge(x)/Si heterojunction internal photoemission long wavelength infrared detectors
There is a major need for long-wavelength-infrared (LWIR) detector arrays in the range of 8 to 16 microns which operate with close-cycle cryocoolers above 65 K. In addition, it would be very attractive to have Si-based infrared (IR) detectors that can be easily integrated with Si readout circuitry and have good pixel-to-pixel uniformity, which is critical for focal plane array (FPA) applications. Here, researchers report a novel Si(1-x)Ge(x)/Si heterojunction internal photoemission (HIP) detector approach with a tailorable long wavelength infrared cutoff wavelength, based on internal photoemission over the Si(1-x)Ge(x)/Si heterojunction. The HIP detectors were grown by molecular beam epitaxy (MBE), which allows one to optimize the device structure with precise control of doping profiles, layer thickness and composition. The feasibility of a novel Si(1-x)Ge(x)/Si HIP detector has been demonstrated with tailorable cutoff wavelength in the LWIR region. Photoresponse at wavelengths 2 to 10 microns are obtained with quantum efficiency (QE) above approx. 1 percent in these non-optimized device structures. It should be possible to significantly improve the QE of the HIP detectors by optimizing the thickness, composition, and doping concentration of the Si(1-x)Ge(x) layers and by configuring the detector for maximum absorption such as the use of a cavity structure. With optimization of the QE and by matching the barrier energy to the desired wavelength cutoff to minimize the thermionic current, researchers predict near background limited performance in the LWIR region with operating temperatures above 65K. Finally, with mature Si processing, the relatively simple device structure offers potential for low-cost producible arrays with excellent uniformity
Ground states of hard-core bosons in one dimensional periodic potentials
With Girardeau's Fermi-Bose mapping, we find the exact ground states of
hard-core bosons residing in a one dimensional periodic potential. The analysis
of these ground states shows that when the number of bosons is commensurate
with the number of wells in the periodic potential, the boson system is a
Mott insulator whose energy gap, however, is given by the single-particle band
gap of the periodic potential; when is not commensurate with , the
system is a metal (not a superfluid). In fact, we argue that there may be no
superfluid phase for any one-dimensional boson system in terms of Landau's
criterion of superfluidity. The Kronig-Penney potential is used to illustrate
our results.Comment: 6 pages, 6 figure
DLC2 modulates angiogenic responses in vascular endothelial cells by regulating cell attachment and migration.
Deleted in liver cancer 1 (DLC1) is a RhoGTPase activation protein-containing tumor suppressor that associates with various types of cancer. Although DLC2 shares a similar domain structure with that of DLC1, the function of DLC2 is not well characterized. Here, we describe the expression and ablation of DLC2 in mice using a reporter-knockout approach. DLC2 is expressed in several tissues and in endothelial cells (ECs) of blood vessels. Although ECs and blood vessels show no histological abnormalities and mice appear overall healthy, DLC2-mutant mice display enhanced angiogenic responses induced by matrigel and by tumor cells. Silencing of DLC2 in human ECs has reduced cell attachment, increased migration, and tube formation. These changes are rescued by silencing of RhoA, suggesting that the process is RhoA pathway dependent. These results indicate that DLC2 is not required for mouse development and normal vessel formation, but may protect mouse from unwanted angiogenesis induced by, for example, tumor cells
- …
