54,517 research outputs found
Moment-based analysis of biochemical networks in a heterogeneous population of communicating cells
Cells can utilize chemical communication to exchange information and
coordinate their behavior in the presence of noise. Communication can reduce
noise to shape a collective response, or amplify noise to generate distinct
phenotypic subpopulations. Here we discuss a moment-based approach to study how
cell-cell communication affects noise in biochemical networks that arises from
both intrinsic and extrinsic sources. We derive a system of approximate
differential equations that captures lower-order moments of a population of
cells, which communicate by secreting and sensing a diffusing molecule. Since
the number of obtained equations grows combinatorially with number of
considered cells, we employ a previously proposed model reduction technique,
which exploits symmetries in the underlying moment dynamics. Importantly, the
number of equations obtained in this way is independent of the number of
considered cells such that the method scales to arbitrary population sizes.
Based on this approach, we study how cell-cell communication affects population
variability in several biochemical networks. Moreover, we analyze the accuracy
and computational efficiency of the moment-based approximation by comparing it
with moments obtained from stochastic simulations.Comment: 6 pages, 5 Figure
Optical properties of Si/Si0.87Ge0.13 multiple quantum well wires
Nanometer-scale wires cut into a Si/Si0.87Ge0.13 multiple quantum well structure were fabricated and characterized by using photoluminescence and photoreflectance at temperatures between 4 and 20 K. It was found that, in addition to a low-energy broadband emission at around 0.8 eV and other features normally observable in photoluminescence measurements, fabrication process induced strain relaxation and enhanced electron-hole droplets emission together with a new feature at 1.131 eV at 4 K were observed. The latter was further identified as a transition related to impurities located at the Si/Si0.87Ge0.13 heterointerfaces
To synchronize or not to synchronize, that is the question: finite-size scaling and fluctuation effects in the Kuramoto model
The entrainment transition of coupled random frequency oscillators presents a
long-standing problem in nonlinear physics. The onset of entrainment in
populations of large but finite size exhibits strong sensitivity to
fluctuations in the oscillator density at the synchronizing frequency. This is
the source for the unusual values assumed by the correlation size exponent
. Locally coupled oscillators on a -dimensional lattice exhibit two
types of frequency entrainment: symmetry-breaking at , and aggregation
of compact synchronized domains in three and four dimensions. Various critical
properties of the transition are well captured by finite-size scaling relations
with simple yet unconventional exponent values.Comment: 9 pages, 1 figure, to appear in a special issue of JSTAT dedicated to
Statphys2
Measuring and analysing vibration motors in insoles via accelerometers
Purpose: Falling is a major public health concern among elderly people, and they often cause serious injuries1,2. They most frequently occur during walking and are associated with the chronic deterioration in the neuromuscular and sensory systems, as well as with ankle muscle weakness and lower endurance of these muscles to fatigue1,3. Vibrating insoles, providing a subsensory mechanical noise signal to the plantar side of the feet, may improve balance in healthy young and older people and in patients with stroke or diabetic neuropathy4. The object of this study is to find the most suitable vibrator to put into the insole which can effectively improve the balance control of the elderlies. Method: We choose three different vibration actuators (micro vibration motor, brushless motor and eccentric motor) with two different weights on the insole. First, we put three same motors and two accelerometers on the insole, as shown in Figure1, then attach another layer on both side of the insole. Second, connect the motors to the power supply and the accelerometer to NI PXI-1033 spectrum analyzer which is used to collect the accelerometers' data. At last, using Fast Fourier Transform (FFT) to analyze and compare the results to see which motor is the most stable and suitable to put into the insole. Results & Discussion: The results showed that the most stable one is the brushless motor. The reason why the frequency is stable is that the relationship between voltage and frequency is linear, and the error is small through continuous measurements. On the other hand, when a person weight 55 kg stands on the insole, the frequency isn't affected by the weight. These two results appear very similar to each other, as shown in Figure 2. According to the result, we use the brushless motor to be our vibrator in the insole, and hope this will help the elderlies improve their balance control ability more efficiency
Optimisation of direct expansion (DX) cooling coils aiming to building energy efficiency
Efficient Air Conditioning (A/C) system is the key to reducing energy consumption in building operation. In order to decrease the energy consumption in an A/C system, a method to calculate the optimal tube row number of a direct expansion (DX) cooling coil for minimizing the entropy generation in the DX cooling which functioned as evaporator in the A/C system was developed. The optimal tube row numbers were determined based on the entropy generation minimization (EGM) approach. Parametric studies were conducted to demonstrate the application of the analytical calculation method. Optimal tube row number for different air mass flow rates, inlet air temperatures and sensible cooling loads were investigated. It was found that the optimal tube row number of a DX cooling coil was in the range of 5 - 9 under normal operating conditions. The optimal tube row number was less when the mass flow rate and inlet air temperature were increased. The tube row number increased when the sensible cooling load was increased. The exergy loss when using a non-optimal and optimal tube row numbers was compared to show the advantage of using the optimal tube row number. The decrease of exery loss ranged from around 24% to 70%. Therefore the new analytical method developed in this paper offers a good practice guide for the design of DX cooling coils for energy conservation
- …