749 research outputs found

    Quantum Dot in 2D Topological Insulator: The Two-channel Kondo Fixed Point

    Full text link
    In this work, a quantum dot couples to two helical edge states of a 2D topological insulator through weak tunnelings is studied. We show that if the electron interactions on the edge states are repulsive, with Luttinger liquid parameter K<1 K < 1 , the system flows to a stable two-channel fixed point at low temperatures. This is in contrast to the case of a quantum dot couples to two Luttinger liquid leads. In the latter case, a strong electron-electron repulsion is needed, with K<1/2 K<1/2 , to reach the two-channel fixed point. This two-channel fixed point is described by a boundary Sine-Gordon Hamiltonian with a KK dependent boundary term. The impurity entropy at zero temperature is shown to be ln2K \ln\sqrt{2K} . The impurity specific heat is CT2K2C \propto T^{\frac{2}{K}-2} when 2/3<K<1 2/3 < K < 1 , and CT C \propto T when K<2/3 K<2/3. We also show that the linear conductance across the two helical edges has non-trivial temperature dependence as a result of the renormalization group flow.Comment: 4+\epsilon page

    VarySysDB: a human genetic polymorphism database based on all H-InvDB transcripts

    Get PDF
    Creation of a vast variety of proteins is accomplished by genetic variation and a variety of alternative splicing transcripts. Currently, however, the abundant available data on genetic variation and the transcriptome are stored independently and in a dispersed fashion. In order to provide a research resource regarding the effects of human genetic polymorphism on various transcripts, we developed VarySysDB, a genetic polymorphism database based on 187 156 extensively annotated matured mRNA transcripts from 36 073 loci provided by H-InvDB. VarySysDB offers information encompassing published human genetic polymorphisms for each of these transcripts separately. This allows comparisons of effects derived from a polymorphism on different transcripts. The published information we analyzed includes single nucleotide polymorphisms and deletion–insertion polymorphisms from dbSNP, copy number variations from Database of Genomic Variants, short tandem repeats and single amino acid repeats from H-InvDB and linkage disequilibrium regions from D-HaploDB. The information can be searched and retrieved by features, functions and effects of polymorphisms, as well as by keywords. VarySysDB combines two kinds of viewers, GBrowse and Sequence View, to facilitate understanding of the positional relationship among polymorphisms, genome, transcripts, loci and functional domains. We expect that VarySysDB will yield useful information on polymorphisms affecting gene expression and phenotypes. VarySysDB is available at http://h-invitational.jp/varygene/

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ

    The Leptonic Higgs as a Messenger of Dark Matter

    Full text link
    We propose that the leptonic cosmic ray signals seen by PAMELA and ATIC result from the annihilation or decay of dark matter particles via states of a leptonic Higgs doublet to τ\tau leptons, linking cosmic ray signals of dark matter to LHC signals of the Higgs sector. The states of the leptonic Higgs doublet are lighter than about 200 GeV, yielding large τˉτ\bar{\tau} \tau and τˉττˉτ\bar{\tau} \tau \bar{\tau} \tau event rates at the LHC. Simple models are given for the dark matter particle and its interactions with the leptonic Higgs, for cosmic ray signals arising from both annihilations and decays in the galactic halo. For the case of annihilations, cosmic photon and neutrino signals are on the verge of discovery.Comment: 34 pages, 9 figures, minor typos corrected, references adde

    Enhanced Dielectric Constant for Efficient Electromagnetic Shielding Based on Carbon-Nanotube-Added Styrene Acrylic Emulsion Based Composite

    Get PDF
    An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs)-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE) of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivity (σac) of the composites, deduced from imaginary permittivity, was used to estimate the SE of the composites in X band (8.2–12.4 GHz), showing a good agreement with the measured results

    Hidden attractors in fundamental problems and engineering models

    Full text link
    Recently a concept of self-excited and hidden attractors was suggested: an attractor is called a self-excited attractor if its basin of attraction overlaps with neighborhood of an equilibrium, otherwise it is called a hidden attractor. For example, hidden attractors are attractors in systems with no equilibria or with only one stable equilibrium (a special case of multistability and coexistence of attractors). While coexisting self-excited attractors can be found using the standard computational procedure, there is no standard way of predicting the existence or coexistence of hidden attractors in a system. In this plenary survey lecture the concept of self-excited and hidden attractors is discussed, and various corresponding examples of self-excited and hidden attractors are considered

    Grafting of 4-(2,4,6-Trimethylphenoxy)benzoyl onto Single-Walled Carbon Nanotubes in Poly(phosphoric acid) via Amide Function

    Get PDF
    Single-walled carbon nanotubes (SWCNTs), which were commercial grade containing 60–70 wt% impurity, were treated in a mild poly(phosphoric acid) (PPA). The purity of PPA treated SWCNTs was greatly improved with or without little damage to SWCNTs framework and stable crystalline carbon particles. An amide model compound, 4-(2,4,6-trimethylphenoxy)benzamide (TMPBA), was reacted with SWCNTs in PPA with additional phosphorous pentoxide as “direct” Friedel–Crafts acylation reaction to afford TMPBA functionalized SWCNTs. All evidences obtained from Fourier-transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, scanning electron microcopy, and transmission electron microscopy strongly supported that the functionalization of SWCNTs with benzamide was indeed feasible
    corecore