85,721 research outputs found

    Phenomenological Analysis of pppp and pˉp\bar{p}p Elastic Scattering Data in the Impact Parameter Space

    Full text link
    We use an almost model-independent analytical parameterization for pppp and pˉp\bar{p}p elastic scattering data to analyze the eikonal, profile, and inelastic overlap functions in the impact parameter space. Error propagation in the fit parameters allows estimations of uncertainty regions, improving the geometrical description of the hadron-hadron interaction. Several predictions are shown and, in particular, the prediction for pppp inelastic overlap function at s=14\sqrt{s}=14 TeV shows the saturation of the Froissart-Martin bound at LHC energies.Comment: 15 pages, 16 figure

    Focusing by Plano-Concave lens using Negative Refraction

    Full text link
    We demonstrate focusing of a plane microwave by a plano-concave lens fabricated from a photonic crystal (PhC) having negative refractive index and left-handed electromagnetic properties. An inverse experiment, in which a plane wave is produced from a source placed at the focal point of the lens is also reported. A frequency dependent negative refractive index, is obtained for the lens from the experimental data which matches well with that determined from band structure calculations

    Negative refraction and plano-concave lens focusing in one-dimensional photonic crystals

    Full text link
    Negative refraction is demonstrated in one-dimensional (1D) dielectric photonic crystals (PCs) at microwave frequencies. Focusing by plano-concave lens made of 1D PC due to negative refraction is also demonstrated. The frequency-dependent negative refractive indices, calculated from the experimental data matches very well with those determined from band structure calculations. The easy fabrication of one-dimensional photonic crystals may open the door for new applications.Comment: 3 pages and 5 figure

    An improved panel method for the solution of three-dimensional leading edge vortex flows Volume 2: User's guide and programmer's document

    Get PDF
    A computer program developed for solving the subsonic, three dimensional flow over wing-body configurations with leading edge vortex separation is presented. Instructions are given for the proper set up and input of a problem into the computer code. Program input formats and output are described, as well as the overlay structure of the program. The program is written in FORTRAN

    An improved panel method for the solution of three-dimensional leading-edge vortex flows. Volume 1: Theory document

    Get PDF
    An improved panel method for the solution of three dimensional flow and wing and wing-body combinations with leading edge vortex separation is presented. The method employs a three dimensional inviscid flow model in which the configuration, the rolled-up vortex sheets, and the wake are represented by quadratic doublet distributions. The strength of the singularity distribution as well as shape and position of the vortex spirals are computed in an iterative fashion starting with an assumed initial sheet geometry. The method calculates forces and moments as well as detail surface pressure distributions. Improvements include the implementation of improved panel numerics for the purpose of elimination the highly nonlinear effects of ring vortices around double panel edges, and the development of a least squares procedure for damping vortex sheet geometry update instabilities. A complete description of the method is included. A variety of cases generated by the computer program implementing the method are presented which verify the mathematical assumptions of the method and which compare computed results with experimental data to verify the underlying physical assumptions made by the method

    Dynamical properties of dipolar Fermi gases

    Full text link
    We investigate dynamical properties of a one-component Fermi gas with dipole-dipole interaction between particles. Using a variational function based on the Thomas-Fermi density distribution in phase space representation, the total energy is described by a function of deformation parameters in both real and momentum space. Various thermodynamic quantities of a uniform dipolar Fermi gas are derived, and then instability of this system is discussed. For a trapped dipolar Fermi gas, the collective oscillation frequencies are derived with the energy-weighted sum rule method. The frequencies for the monopole and quadrupole modes are calculated, and softening against collapse is shown as the dipolar strength approaches the critical value. Finally, we investigate the effects of the dipolar interaction on the expansion dynamics of the Fermi gas and show how the dipolar effects manifest in an expanded cloud.Comment: 14 pages, 8 figures, submitted to New J. Phy

    Scalable Text and Link Analysis with Mixed-Topic Link Models

    Full text link
    Many data sets contain rich information about objects, as well as pairwise relations between them. For instance, in networks of websites, scientific papers, and other documents, each node has content consisting of a collection of words, as well as hyperlinks or citations to other nodes. In order to perform inference on such data sets, and make predictions and recommendations, it is useful to have models that are able to capture the processes which generate the text at each node and the links between them. In this paper, we combine classic ideas in topic modeling with a variant of the mixed-membership block model recently developed in the statistical physics community. The resulting model has the advantage that its parameters, including the mixture of topics of each document and the resulting overlapping communities, can be inferred with a simple and scalable expectation-maximization algorithm. We test our model on three data sets, performing unsupervised topic classification and link prediction. For both tasks, our model outperforms several existing state-of-the-art methods, achieving higher accuracy with significantly less computation, analyzing a data set with 1.3 million words and 44 thousand links in a few minutes.Comment: 11 pages, 4 figure

    Fine Structure of the 1s3p ^3P_J Level in Atomic ^4He: Theory and Experiment

    Full text link
    We report on a theoretical calculation and a new experimental determination of the 1s3p ^3P_J fine structure intervals in atomic ^4He. The values from the theoretical calculation of 8113.730(6) MHz and 658.801(6) MHz for the nu_{01} and nu_{12} intervals, respectively, disagree significantly with previous experimental results. However, the new laser spectroscopic measurement reported here yields values of 8113.714(28) MHz and 658.810(18) MHz for these intervals. These results show an excellent agreement with the theoretical values and resolve the apparent discrepancy between theory and experiment.Comment: 9 pages, 3 figure

    Generalization of Gutzwiller Approximation

    Full text link
    We derive expressions required in generalizing the Gutzwiller approximation to models comprising arbitrarily degenerate localized orbitals.Comment: 6 pages, 1 figure, to appear in J.Phys.Soc.Jpn. vol.6
    • …
    corecore