19,797 research outputs found

    Supersymmetric Reflection Matrices

    Get PDF
    We briefly review the general structure of integrable particle theories in 1+1 dimensions having N=1 supersymmetry. Examples are specific perturbed superconformal field theories (of Yang-Lee type) and the N=1 supersymmetric sine-Gordon theory. We comment on the modifications that are required when the N=1 supersymmetry algebra contains non-trivial topological charges.Comment: 7 pages, Revtex, 2 figures, talk given at the International Seminar on Supersymmetry and Quantum Field Theory, dedicated to the memory of D.V.Volkov, Kharkov (Ukraine), January 5-7, 199

    Charge carrier induced lattice strain and stress effects on As activation in Si

    Full text link
    We studied lattice expansion coefficient due to As using density functional theory with particular attention to separating the impact of electrons and ions. Based on As deactivation mechanism under equilibrium conditions, the effect of stress on As activation is predicted. We find that biaxial stress results in minimal impact on As activation, which is consistent with experimental observations by Sugii et al. [J. Appl. Phys. 96, 261 (2004)] and Bennett et al.[J. Vac. Sci. Tech. B 26, 391 (2008)]

    The Operator Product Expansion of the Lowest Higher Spin Current at Finite N

    Full text link
    For the N=2 Kazama-Suzuki(KS) model on CP^3, the lowest higher spin current with spins (2, 5/2, 5/2,3) is obtained from the generalized GKO coset construction. By computing the operator product expansion of this current and itself, the next higher spin current with spins (3, 7/2, 7/2, 4) is also derived. This is a realization of the N=2 W_{N+1} algebra with N=3 in the supersymmetric WZW model. By incorporating the self-coupling constant of lowest higher spin current which is known for the general (N,k), we present the complete nonlinear operator product expansion of the lowest higher spin current with spins (2, 5/2, 5/2, 3) in the N=2 KS model on CP^N space. This should coincide with the asymptotic symmetry of the higher spin AdS_3 supergravity at the quantum level. The large (N,k) 't Hooft limit and the corresponding classical nonlinear algebra are also discussed.Comment: 62 pages; the footnotes added, some redundant appendices removed, the presentations in the whole paper improved and to appear in JHE

    The Large N 't Hooft Limit of Kazama-Suzuki Model

    Full text link
    We consider N=2 Kazama-Suzuki model on CP^N=SU(N+1)/SU(N)xU(1). It is known that the N=2 current algebra for the supersymmetric WZW model, at level k, is a nonlinear algebra. The N=2 W_3 algebra corresponding to N=2 was recovered from the generalized GKO coset construction previously. For N=4, we construct one of the higher spin currents, in N=2 W_5 algebra, with spins (2, 5/2, 5/2, 3). The self-coupling constant in the operator product expansion of this current and itself depends on N as well as k explicitly. We also observe a new higher spin primary current of spins (3, 7/2, 7/2, 4). From the behaviors of N=2, 4 cases, we expect the operator product expansion of the lowest higher spin current and itself in N=2 W_{N+1} algebra. By taking the large (N, k) limit on the various operator product expansions in components, we reproduce, at the linear order, the corresponding operator product expansions in N=2 classical W_{\infty}^{cl}[\lambda] algebra which is the asymptotic symmetry of the higher spin AdS_3 supergravity found recently.Comment: 44 pages; the two typos in the first paragraph of page 23 corrected and to appear in JHE

    Evidence for shape coexistence in 98^{98}Mo

    Full text link
    A γγ\gamma\gamma angular correlation experiment has been performed to investigate the low-energy states of the nucleus 98^{98}Mo. The new data, including spin assignments, multipole mixing ratios and lifetimes reveal evidence for shape coexistence and mixing in 98^{98}Mo, arising from a proton intruder configuration. This result is reproduced by a theoretical calculation within the proton-neutron interacting boson model with configuration mixing, based on microscopic energy density functional theory. The microscopic calculation indicates the importance of the proton particle-hole excitation across the Z=40 sub-shell closure and the subsequent mixing between spherical vibrational and the γ\gamma-soft equilibrium shapes in 98^{98}Mo.Comment: 6 pages, 5 figures, 3 tables; published in Phys. Rev.
    corecore