36,324 research outputs found
The opsonizing ligand on Salmonella typhimurium influences incorporation of specific, but not azurophil, granule constituents into neutrophil phagosomes.
Phagosomes were purified from human neutrophils ingesting Salmonella typhimurium opsonized with adsorbed normal human serum or with rabbit IgG. Constituents within the phagosome were endogenously labeled by supplying the cells with 125INa during phagocytosis. Lactoferrin and vitamin B12 binding protein (TC1 and TC3), markers for specific granules, were present in the phagosomes from neutrophils ingesting S. typhimurium opsonized with IgG but were 3.5- to 5-fold less prominent in phagosomes from cells phagocytosing Salmonella bearing C3 fragments only. In contrast, iodinated azurophilic granule components, most prominently defensins, were the major constituents in phagosomes prepared under both opsonization conditions. Furthermore, labeled complement (CR1 and CR3) and immunoglobulin (Fc gamma RIII) receptors were incorporated in the phagosome regardless of the ligand mediating phagocytosis. These results suggest that the ligand-receptor interactions mediating phagocytosis influence incorporation of neutrophil-specific granule contents into phagosomes
Engine inlet distortion in a 9.2 percent scale vectored thrust STOVL model in ground effect
Advanced Short Takeoff/Vertical Landing (STOVL) aircraft which can operate from remote locations, damaged runways, and small air capable ships are being pursued for deployment around the turn of the century. To achieve this goal, NASA Lewis Research Center, McDonnell Douglas Aircraft, and DARPA defined a cooperative program for testing in the NASA Lewis 9- by 15-foot low speed wind tunnel (LSWT) to establish a database for hot gas ingestion, one of the technologies critical to STOVL. Results are presented which show the engine inlet distortions (both temperature and pressure) in a 9.2 percent scale vectored thrust STOVL model in ground effects. Results are shown for the forward nozzle splay angles of 0 degrees, -6 degrees, and 18 degrees. The model support system had 4 degrees of freedom, heated high pressure air for nozzle flow, and a suction system exhaust for inlet flow. The headwind (freestream) velocity was varied from 8 to 23 knots
Factorizing twists and R-matrices for representations of the quantum affine algebra U_q(\hat sl_2)
We calculate factorizing twists in evaluation representations of the quantum
affine algebra U_q(\hat sl_2). From the factorizing twists we derive a
representation independent expression of the R-matrices of U_q(\hat sl_2).
Comparing with the corresponding quantities for the Yangian Y(sl_2), it is
shown that the U_q(\hat sl_2) results can be obtained by `replacing numbers by
q-numbers'. Conversely, the limit q -> 1 exists in representations of U_q(\hat
sl_2) and both the factorizing twists and the R-matrices of the Yangian Y(sl_2)
are recovered in this limit.Comment: 19 pages, LaTe
Compressive Inverse Scattering II. SISO Measurements with Born scatterers
Inverse scattering methods capable of compressive imaging are proposed and
analyzed. The methods employ randomly and repeatedly (multiple-shot) the
single-input-single-output (SISO) measurements in which the probe frequencies,
the incident and the sampling directions are related in a precise way and are
capable of recovering exactly scatterers of sufficiently low sparsity.
For point targets, various sampling techniques are proposed to transform the
scattering matrix into the random Fourier matrix. The results for point targets
are then extended to the case of localized extended targets by interpolating
from grid points. In particular, an explicit error bound is derived for the
piece-wise constant interpolation which is shown to be a practical way of
discretizing localized extended targets and enabling the compressed sensing
techniques.
For distributed extended targets, the Littlewood-Paley basis is used in
analysis. A specially designed sampling scheme then transforms the scattering
matrix into a block-diagonal matrix with each block being the random Fourier
matrix corresponding to one of the multiple dyadic scales of the extended
target. In other words by the Littlewood-Paley basis and the proposed sampling
scheme the different dyadic scales of the target are decoupled and therefore
can be reconstructed scale-by-scale by the proposed method. Moreover, with
probes of any single frequency \om the coefficients in the Littlewood-Paley
expansion for scales up to \om/(2\pi) can be exactly recovered.Comment: Add a new section (Section 3) on localized extended target
Phonon-induced relaxation of a two-state system in solids
We study phonon-induced relaxation of quantum states of a particle (e.g.,
electron or proton) in a rigid double-well potential in a solid. Relaxation
rate due to Raman two-phonon processes have been computed. We show that in a
two-state limit, symmetry arguments allow one to express these rates in terms
of independently measurable parameters. In general, the two-phonon processes
dominate relaxation at higher temperature. Due to parity effect in a biased
two-state system, their rate can be controlled by the bias.Comment: 5 PR pages, 1 figur
Multi-Magnon Scattering in the Ferromagnetic XXX-Model with Inhomogeneities
We determine the transition amplitude for multi-magnon scattering induced
through an inhomogeneous distribution of the coupling constant in the
ferromagnetic XXX-model. The two and three particle amplitudes are explicitely
calculated at small momenta. This suggests a rather plausible conjecture also
for a formula of the general n-particle amplitude.Comment: 21 pages, latex, no figure
- …
