82,268 research outputs found
Structure and Response in the World Trade Network
We examine how the structure of the world trade network has been shaped by
globalization and recessions over the last 40 years. We show that by treating
the world trade network as an evolving system, theory predicts the trade
network is more sensitive to evolutionary shocks and recovers more slowly from
them now than it did 40 years ago, due to structural changes in the world trade
network induced by globalization. We also show that recession-induced change to
the world trade network leads to an \emph{increased} hierarchical structure of
the global trade network for a few years after the recession.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
Recommended from our members
Lipid and Protein Transfer between Nanolipoprotein Particles and Supported Lipid Bilayers.
A nanolipoprotein particle (NLP) is a lipid bilayer disc stabilized by two amphipathic "scaffold" apolipoproteins. It has been most notably utilized as a tool for solubilizing a variety of membrane proteins while preserving structural and functional properties. Transfer of functional proteins from NLPs into model membrane systems such as supported lipid bilayers (SLBs) would enable new opportunities, for example, two-dimensional protein crystallization and studies on protein-protein interactions. This work used fluorescence microscopy and atomic force microscopy to investigate the interaction between NLPs and SLBs. When incubated with SLBs, NLPs were found to spontaneously deliver lipid and protein cargo. The impact of membrane composition on lipid exchange was explored, revealing a positive correlation between the magnitude of lipid transfer and concentration of defects in the target SLB. Incorporation of lipids capable of binding specifically to polyhistidine tags encoded into the apolipoproteins also boosted transfer of NLP cargo. Optimal conditions for lipid and protein delivery from NLPs to SLBs are proposed based on interaction mechanisms
Asymptotically false-positive-maximizing attack on non-binary Tardos codes
We use a method recently introduced by Simone and Skoric to study accusation
probabilities for non-binary Tardos fingerprinting codes. We generalize the
pre-computation steps in this approach to include a broad class of collusion
attack strategies. We analytically derive properties of a special attack that
asymptotically maximizes false accusation probabilities. We present numerical
results on sufficient code lengths for this attack, and explain the abrupt
transitions that occur in these results
Recommended from our members
Revisiting individual and group differences in thermal comfort based on ASHRAE database
Different thermal demands and preferences between individuals lead to a low occupant satisfaction rate, despite the high energy consumption by HVAC system. This study aims to quantify the difference in thermal demands, and to compare the influential factors which might lead to those differences. With the recently released ASHRAE Database, we quantitatively answered the following two research questions: which factors would lead to marked individual difference, and what the magnitude of this difference is. Linear regression has been applied to describe the macro-trend of how people feel thermally under different temperatures. Three types of factors which might lead to different thermal demands have been studied and compared in this study, i.e. individual factors, building characteristics and geographical factors. It was found that the local climate has the most marked impact on the neutral temperature, with an effect size of 3.5 °C; followed by country, HVAC operation mode and body built, which lead to a difference of more than 1 °C. In terms of the thermal sensitivity, building type and local climate are the most influential factors. Subjects in residential buildings or coming from Dry climate zone could accept 2.5 °C wider temperature range than those in office, education buildings or from Continental climate zone. The findings of this research could help thermal comfort researchers and designers to identify influential factors that might lead to individual difference, and could shed light on the feature selection for the development of personal comfort models
Heat Capacity of ^3He in Aerogel
The heat capacity of pure ^3He in low density aerogel is measured at 22.5
bar. The superfluid response is simultaneously monitored with a torsional
oscillator. A slightly rounded heat capacity peak, 65 mu K in width, is
observed at the ^3He-aerogel superfluid transition, T_{ca}. Subtracting the
bulk ^3He contribution, the heat capacity shows a Fermi-liquid form above
T_{ca}. The heat capacity attributed to superfluid within the aerogel can be
fit with a rounded BCS form, and accounts for 0.30 of the non-bulk fluid in the
aerogel, indicating a substantial reduction in the superfluid order parameter
consistent with earlier superfluid density measurements.Comment: 4 pages, 5 figure
G(2) quivers
We present, in explicit matrix representation and a modernity befitting the community, the classification of the finite discrete subgroups of G2 and compute the McKay quivers arising therefrom. Of physical interest are the classes of Script N = 1 gauge theories descending from M-theory and of mathematical interest are possible steps toward a systematic study of crepant resolutions to smooth G2 manifolds as well as generalised McKay Correspondences. This writing is a companion monograph to hep-th/9811183 and hep-th/9905212, wherein the analogues for Calabi-Yau three- and four-folds were considered
- …
