294 research outputs found
Spin-charge separation in cold Fermi-gases: a real time analysis
Using the adaptive time-dependent density-matrix renormalization group method
for the 1D Hubbard model, the splitting of local perturbations into separate
wave packets carrying charge and spin is observed in real-time. We show the
robustness of this separation beyond the low-energy Luttinger liquid theory by
studying the time-evolution of single particle excitations and density wave
packets. A striking signature of spin-charge separation is found in 1D cold
Fermi gases in a harmonic trap at the boundary between liquid and
Mott-insulating phases. We give quantitative estimates for an experimental
observation of spin-charge separation in an array of atomic wires
Phases of Bosons or Fermions in confined optical lattices
Phases of Bose or Fermi atoms in optical lattices confined in harmonic traps
are studied within the Thomas-Fermi approximation. Critical radii and particle
number for onset of Mott insulator states are calculated and phase diagrams
shown in 1D, and estimated for 2 and 3D. Methods to observe these and novel
phases such as d-wave superconductivity is discussed. Specifically the
collective modes are calculated.Comment: Revised and extended. To appear in PR
Magnetic Braking and Viscous Damping of Differential Rotation in Cylindrical Stars
Differential rotation in stars generates toroidal magnetic fields whenever an
initial seed poloidal field is present. The resulting magnetic stresses, along
with viscosity, drive the star toward uniform rotation. This magnetic braking
has important dynamical consequences in many astrophysical contexts. For
example, merging binary neutron stars can form "hypermassive" remnants
supported against collapse by differential rotation. The removal of this
support by magnetic braking induces radial fluid motion, which can lead to
delayed collapse of the remnant to a black hole. We explore the effects of
magnetic braking and viscosity on the structure of a differentially rotating,
compressible star, generalizing our earlier calculations for incompressible
configurations. The star is idealized as a differentially rotating, infinite
cylinder supported initially by a polytropic equation of state. The gas is
assumed to be infinitely conducting and our calculations are performed in
Newtonian gravitation. Though highly idealized, our model allows for the
incorporation of magnetic fields, viscosity, compressibility, and shocks with
minimal computational resources in a 1+1 dimensional Lagrangian MHD code. Our
evolution calculations show that magnetic braking can lead to significant
structural changes in a star, including quasistatic contraction of the core and
ejection of matter in the outermost regions to form a wind or an ambient disk.
These calculations serve as a prelude and a guide to more realistic MHD
simulations in full 3+1 general relativity.Comment: 20 pages, 19 figures, 3 tables, AASTeX, accepted by Ap
Polaron to molecule transition in a strongly imbalanced Fermi gas
A single down spin Fermion with an attractive, zero range interaction with a
Fermi sea of up-spin Fermions forms a polaronic quasiparticle. The associated
quasiparticle weight vanishes beyond a critical strength of the attractive
interaction, where a many-body bound state is formed. From a variational
wavefunction in the molecular limit, we determine the critical value for the
polaron to molecule transition. The value agrees well with the diagrammatic
Monte Carlo results of Prokof'ev and Svistunov and is consistent with recent
rf-spectroscopy measurements of the quasiparticle weight by Schirotzek et. al.
In addition, we calculate the contact coefficient of the strongly imbalanced
gas, using the adiabatic theorem of Tan and discuss the implications of the
polaron to molecule transition for the phase diagram of the attractive Fermi
gas at finite imbalance.Comment: 10 pages, 4 figures, RevTex4, minor changes, references adde
Gravitational waves from relativistic rotational core collapse
We present results from simulations of axisymmetric relativistic rotational
core collapse. The general relativistic hydrodynamic equations are formulated
in flux-conservative form and solved using a high-resolution shock-capturing
scheme. The Einstein equations are approximated with a conformally flat
3-metric. We use the quadrupole formula to extract waveforms of the
gravitational radiation emitted during the collapse. A comparison of our
results with those of Newtonian simulations shows that the wave amplitudes
agree within 30%. Surprisingly, in some cases, relativistic effects actually
diminish the amplitude of the gravitational wave signal. We further find that
the parameter range of models suffering multiple coherent bounces due to
centrifugal forces is considerably smaller than in Newtonian simulations.Comment: 4 pages, 3 figure
Oscillating Casimir force between impurities in one-dimensional Fermi liquids
We study the interaction of two localized impurities in a repulsive
one-dimensional Fermi liquid via bosonization. In a previous paper [Phys. Rev.
A 72, 023616 (2005)], it was shown that at distances much larger than the
interparticle spacing the impurities interact through a Casimir-type force
mediated by the zero sound phonons of the underlying quantum liquid. Here we
extend these results and show that the strength and sign of this Casimir
interaction depend sensitively on the impurities separation. These oscillations
in the Casimir interaction have the same period as Friedel oscillations. Their
maxima correspond to tunneling resonances tuned by the impurities separation.Comment: This paper is a continuation of Phys. Rev. A 72, 023616 (2005). v2:
two appendix adde
Scanning gate experiments: from strongly to weakly invasive probes
An open resonator fabricated in a two-dimensional electron gas is used to
explore the transition from strongly invasive scanning gate microscopy to the
perturbative regime of weak tip-induced potentials. With the help of numerical
simulations that faithfully reproduce the main experimental findings, we
quantify the extent of the perturbative regime in which the tip-induced
conductance change is unambiguously determined by properties of the unperturbed
system. The correspondence between the experimental and numerical results is
established by analyzing the characteristic length scale and the amplitude
modulation of the conductance change. In the perturbative regime, the former is
shown to assume a disorder-dependent maximum value, while the latter linearly
increases with the strength of a weak tip potential.Comment: 11 pages, 7 figure
The Spin Periods and Rotational Profiles of Neutron Stars at Birth
We present results from an extensive set of one- and two-dimensional
radiation-hydrodynamic simulations of the supernova core collapse, bounce, and
postbounce phases, and focus on the protoneutron star (PNS) spin periods and
rotational profiles as a function of initial iron core angular velocity, degree
of differential rotation, and progenitor mass. For the models considered, we
find a roughly linear mapping between initial iron core rotation rate and PNS
spin. The results indicate that the magnitude of the precollapse iron core
angular velocities is the single most important factor in determining the PNS
spin. Differences in progenitor mass and degree of differential rotation lead
only to small variations in the PNS rotational period and profile. Based on our
calculated PNS spins, at ~ 200-300 milliseconds after bounce, and assuming
angular momentum conservation, we estimate final neutron star rotation periods.
We find periods of one millisecond and shorter for initial central iron core
periods of below ~ 10 s. This is appreciably shorter than what previous studies
have predicted and is in disagreement with current observational data from
pulsar astronomy. After considering possible spindown mechanisms that could
lead to longer periods we conclude that there is no mechanism that can robustly
spin down a neutron star from ~ 1 ms periods to the "injection" periods of tens
to hundreds of milliseconds observed for young pulsars. Our results indicate
that, given current knowledge of the limitations of neutron star spindown
mechanisms, precollapse iron cores must rotate with periods around 50-100
seconds to form neutron stars with periods generically near those inferred for
the radio pulsar population.Comment: 31 pages, including 20 color figures. High-resolution figures
available from the authors upon request. Accepted to Ap
General-Relativistic MHD for the Numerical Construction of Dynamical Spacetimes
We assemble the equations of general relativistic magnetohydrodynamics (MHD)
in 3+1 form. These consist of the complete coupled set of Maxwell equations for
the electromagnetic field, Einstein's equations for the gravitational field,
and the equations of relativistic MHD for a perfectly conducting ideal gas. The
adopted form of the equations is suitable for evolving numerically a
relativistic MHD fluid in a dynamical spacetime characterized by a strong
gravitational field.Comment: 8 pages; scheduled for March 10 issue of Ap
Commensurate-incommensurate transition of cold atoms in an optical lattice
An atomic gas subject to a commensurate periodic potential generated by an
optical lattice undergoes a superfluid--Mott insulator transition. Confining a
strongly interacting gas to one dimension generates an instability where an
arbitrary weak potential is sufficient to pin the atoms into the Mott state;
here, we derive the corresponding phase diagram. The commensurate pinned state
may be detected via its finite excitation gap and the Bragg peaks in the static
structure factor.Comment: 4 pages, 2 figure
- …
