126 research outputs found

    Plasmas and Controlled Nuclear Fusion

    Get PDF
    Contains reports on thirteen research projects split into three sections.National Science Foundation (Grant GK-2581

    Context-Dependent Requirement for dE2F during Oncogenic Proliferation

    Get PDF
    The Hippo pathway negatively regulates the cell number in epithelial tissue. Upon its inactivation, an excess of cells is produced. These additional cells are generated from an increased rate of cell division, followed by inappropriate proliferation of cells that have failed to exit the cell cycle. We analyzed the consequence of inactivation of the entire E2F family of transcription factors in these two settings. In Drosophila, there is a single activator, dE2F1, and a single repressor, dE2F2, which act antagonistically to each other during development. While the loss of the activator dE2F1 results in a severe impairment in cell proliferation, this defect is rescued by the simultaneous loss of the repressor dE2F2, as cell proliferation occurs relatively normally in the absence of both dE2F proteins. We found that the combined inactivation of dE2F1 and dE2F2 had no significant effect on the increased rate of cell division of Hippo pathway mutant cells. In striking contrast, inappropriate proliferation of cells that failed to exit the cell cycle was efficiently blocked. Furthermore, our data suggest that such inappropriate proliferation was primarily dependent on the activator, de2f1, as loss of de2f2 was inconsequential. Consistently, Hippo pathway mutant cells had elevated E2F activity and induced dE2F1 expression at a point when wild-type cells normally exit the cell cycle. Thus, we uncovered a critical requirement for the dE2F family during inappropriate proliferation of Hippo pathway mutant cells

    Estimation of the burden of varicella in Europe before the introduction of universal childhood immunization

    Full text link

    E2F3 Loss Has Opposing Effects on Different pRB-Deficient Tumors, Resulting in Suppression of Pituitary Tumors but Metastasis of Medullary Thyroid Carcinomas

    No full text
    The E2F transcription factors are key downstream targets of the retinoblastoma protein (pRB) tumor suppressor. We have previously shown that E2F3 plays a critical role in mediating the mitogen-induced activation of E2F-responsive genes and contributes to both the inappropriate proliferation and the p53-dependent apoptosis that arise in pRB-deficient embryos. Here we show that E2F3 also has a significant effect on the phenotype of tumor-prone Rb(+/−) mice. The absence of E2F3 results in a significant expansion in the life spans of these animals that correlates with a dramatic alteration in the tumor spectrum. E2F3 loss suppresses the development of the pituitary tumors that normally account for the death of Rb(+/−) mice. However, it also promotes the development of medullary thyroid carcinomas yielding metastases at a high frequency. This increased aggressiveness does not seem to result from any change in p53 levels or activity in these tumors. We show that, instead, E2F3 loss leads to an increase in the rate of tumor initiation. Finally, analysis of Rb(+/−); E2f3(+/−) mice shows that this tumor-suppressive function of E2F3 is dose dependent
    corecore