164 research outputs found

    Corticotropin-releasing hormone (CRH) downregulates the function of its receptor (CRF1) and induces CRF1 expression in hippocampal and cortical regions of the immature rat brain.

    Get PDF
    In addition to regulating the neuroendocrine stress response, corticotropin-releasing hormone (CRH) has been implicated in both normal and pathological behavioral and cognitive responses to stress. CRH-expressing cells and their target neurons possessing CRH receptors (CRF1 and CRF2) are distributed throughout the limbic system, but little is known about the regulation of limbic CRH receptor function and expression, including regulation by the peptide itself. Because CRH is released from limbic neuronal terminals during stress, this regulation might play a crucial role in the mechanisms by which stress contributes to human neuropsychiatric conditions such as depression or posttraumatic stress disorder. Therefore, these studies tested the hypothesis that CRH binding to CRF1 influenced the levels and mRNA expression of this receptor in stress-associated limbic regions of immature rat. Binding capacities and mRNA levels of both CRF1 and CRF2 were determined at several time points after central CRH administration. CRH downregulated CRF1 binding in frontal cortex significantly by 4 h. This transient reduction (no longer evident at 8 h) was associated with rapid increase of CRF1 mRNA expression, persisting for >8 h. Enhanced CRF1 expression-with a different time course-occurred also in hippocampal CA3, but not in CA1 or amygdala, CRF2 binding and mRNA levels were not altered by CRH administration. To address the mechanisms by which CRH regulated CRF1, the specific contributions of ligand-receptor interactions and of the CRH-induced neuronal stimulation were examined. Neuronal excitation without occupation of CRF1 induced by kainic acid, resulted in no change of CRF1 binding capacity, and in modest induction of CRF1 mRNA expression. Furthermore, blocking the neuroexcitant effects of CRH (using pentobarbital) abolished the alterations in CRF1 binding and expression. These results indicate that CRF1 regulation involves both occupancy of this receptor by its ligand, as well as "downstream" cellular activation and suggest that stress-induced perturbation of CRH-CRF1 signaling may contribute to abnormal neuronal communication after some stressful situations

    Enhanced expression of a specific hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN) in surviving dentate gyrus granule cells of human and experimental epileptic hippocampus.

    Get PDF
    Changes in the expression of ion channels, contributing to altered neuronal excitability, are emerging as possible mechanisms in the development of certain human epilepsies. In previous immature rodent studies of experimental prolonged febrile seizures, isoform-specific changes in the expression of hyperpolarization-activated cyclic nucleotide-gated cation channels (HCNs) correlated with long-lasting hippocampal hyperexcitability and enhanced seizure susceptibility. Prolonged early-life seizures commonly precede human temporal lobe epilepsy (TLE), suggesting that transcriptional dysregulation of HCNs might contribute to the epileptogenic process. Therefore, we determined whether HCN isoform expression was modified in hippocampi of individuals with TLE. HCN1 and HCN2 expression were measured using in situ hybridization and immunocytochemistry in hippocampi from three groups: TLE with hippocampal sclerosis (HS; n = 17), epileptic hippocampi without HS, or non-HS (NHS; n = 10), and autopsy material (n = 10). The results obtained in chronic human epilepsy were validated by examining hippocampi from the pilocarpine model of chronic TLE. In autopsy and most NHS hippocampi, HCN1 mRNA expression was substantial in pyramidal cell layers and lower in dentate gyrus granule cells (GCs). In contrast, HCN1 mRNA expression over the GC layer and in individual GCs from epileptic hippocampus was markedly increased once GC neuronal density was reduced by >50%. HCN1 mRNA changes were accompanied by enhanced immunoreactivity in the GC dendritic fields and more modest changes in HCN2 mRNA expression. Furthermore, similar robust and isoform-selective augmentation of HCN1 mRNA expression was evident also in the pilocarpine animal model of TLE. These findings indicate that the expression of HCN isoforms is dynamically regulated in human as well as in experimental hippocampal epilepsy. After experimental febrile seizures (i.e., early in the epileptogenic process), the preserved and augmented inhibition onto principal cells may lead to reduced HCN1 expression. In contrast, in chronic epileptic HS hippocampus studied here, the profound loss of interneuronal and principal cell populations and consequent reduced inhibition, coupled with increased dendritic excitation of surviving GCs, might provoke a "compensatory" enhancement of HCN1 mRNA and protein expression

    Self-similar disk packings as model spatial scale-free networks

    Full text link
    The network of contacts in space-filling disk packings, such as the Apollonian packing, are examined. These networks provide an interesting example of spatial scale-free networks, where the topology reflects the broad distribution of disk areas. A wide variety of topological and spatial properties of these systems are characterized. Their potential as models for networks of connected minima on energy landscapes is discussed.Comment: 13 pages, 12 figures; some bugs fixed and further discussion of higher-dimensional packing

    The role of inflammation in epilepsy.

    Get PDF
    Epilepsy is the third most common chronic brain disorder, and is characterized by an enduring predisposition to generate seizures. Despite progress in pharmacological and surgical treatments of epilepsy, relatively little is known about the processes leading to the generation of individual seizures, and about the mechanisms whereby a healthy brain is rendered epileptic. These gaps in our knowledge hamper the development of better preventive treatments and cures for the approximately 30% of epilepsy cases that prove resistant to current therapies. Here, we focus on the rapidly growing body of evidence that supports the involvement of inflammatory mediators-released by brain cells and peripheral immune cells-in both the origin of individual seizures and the epileptogenic process. We first describe aspects of brain inflammation and immunity, before exploring the evidence from clinical and experimental studies for a relationship between inflammation and epilepsy. Subsequently, we discuss how seizures cause inflammation, and whether such inflammation, in turn, influences the occurrence and severity of seizures, and seizure-related neuronal death. Further insight into the complex role of inflammation in the generation and exacerbation of epilepsy should yield new molecular targets for the design of antiepileptic drugs, which might not only inhibit the symptoms of this disorder, but also prevent or abrogate disease pathogenesis

    Febrile seizures and mechanisms of epileptogenesis: insights from an animal model.

    Get PDF
    Temporal lobe epilepsy (TLE) is the most prevalent type of human epilepsy, yet the causes for its development, and the processes involved, are not known. Most individuals with TLE do not have a family history, suggesting that this limbic epilepsy is a consequence of acquired rather than genetic causes. Among suspected etiologies, febrile seizures have frequently been cited. This is due to the fact that retrospective analyses of adults with TLE have demonstrated a high prevalence (20-->60%) of a history of prolonged febrile seizures during early childhood, suggesting an etiological role for these seizures in the development of TLE. Specifically, neuronal damage induced by febrile seizures has been suggested as a mechanism for the development of mesial temporal sclerosis, the pathological hallmark of TLE. However, the statistical correlation between febrile seizures and TLE does not necessarily indicate a causal relationship. For example, preexisting (genetic or acquired) 'causes' that result independently in febrile seizures and in TLE would also result in tight statistical correlation. For obvious reasons, complex febrile seizures cannot be induced in the human, and studies of their mechanisms and of their consequences on brain molecules and circuits are severely limited. Therefore, an animal model was designed to study these seizures. The model reproduces the fundamental key elements of the human condition: the age specificity, the physiological temperatures seen in fevers of children, the length of the seizures and their lack of immediate morbidity. Neuroanatomical, molecular and functional methods have been used in this model to determine the consequences of prolonged febrile seizures on the survival and integrity of neurons, and on hyperexcitability in the hippocampal-limbic network. Experimental prolonged febrile seizures did not lead to death of any of the seizure-vulnerable populations in hippocampus, and the rate of neurogenesis was also unchanged. Neuronal function was altered sufficiently to promote synaptic reorganization of granule cells, and transient and long-term alterations in the expression of specific genes were observed. The contribution of these consequences of febrile seizures to the epileptogenic process is discussed

    Nanobio Silver: Its Interactions with Peptides and Bacteria, and Its Uses in Medicine

    Full text link

    Fragmented realities: The ‘sectarianisation’of space among Iraqi Shias in London

    Get PDF
    How do the spaces we inhabit shape our lived experiences? And how do those lived experiences in turn come to shape and influence our political subjectivity? Such questions are rendered all the more important in studies of migrant or diaspora populations who, by definition, conduct their daily lives in spaces and places that were initially alien to them. The way in which migrants interact with the spaces around them can tell us much about the social, political, and religious engagements they invest in, as well as the very real way in which they experience their local milieu. Through a detailed study of Iraqi Shiis living in London, specifically in the north-western borough of Brent, this article will seek to trace the ways in which religious institutions have carved up the physical and social landscape of north-west London in ways that have enduring effect on the communities with which they engage. The increasing diversification of different religious establishments, I argue, has led to a fragmentation of the city-as-lived, in which the vast majority of practising Iraqi Shiis engage with only small isolated pockets of the urban environment on a daily basis. Moreover, the growing number of specifically Shia schools, charities, mosques, community centres and other such institutions has resulted in what I call a ‘sectarianisation’ of space in Brent, in which individuals hailing from different branches of Islam inhabit different spaces within the city despite often living within metres of each other. Drawing on a mixture of interviews, participant observation, and mapping techniques, I bring together theory and practice in order to sketch out the ways migrant lives can come to be localised in certain spaces, and what that can ultimately mean in terms of their political subjectivity and engagement
    corecore