643 research outputs found

    Early (<<0.3 day) R-band light curve of the optical afterglow of GRB030329

    Full text link
    We observed the optical afterglow of the bright gamma-ray burst GRB030329 on the nights of 2003 March 29, using the Kiso observatory (the University of Tokyo) 1.05 m Schmidt telescope. Data were taken from March 29 13:21:26 UT to 17:43:16 (0.072 to 0.253 days after the burst), using an RcRc-band filter. The obtained RcRc-band light curve has been fitted successfully by a single power law function with decay index of 0.891Ā±0.0040.891\pm0.004. These results remain unchanged when incorporating two early photometric data points at 0.065 and 0.073 days, reported by Price et al.(2003) using the SSO 40 inch telescope, and further including RTT150 data (Burenin et al. 2003) covering at about 0.3 days. Over the period of 0.065-0.285 days after the burst, any deviation from the power-law decay is smaller than Ā±\pm0.007 mag. The temporal structure reported by Uemura et al. (2003) does not show up in our RR-band light curve.Comment: 9 pages, 2 figures, 1 table, accepted for publication in ApJ

    Improvement of Production Rate of YBCO Coated Conductors Fabricated by TFA-MOD Method

    Get PDF
    AbstractThe metal-organic deposition (MOD) method using trifluoroacetate (TFA) salts is considered to be an effective method for inexpensively fabricating YBa2Cu3O7-y (YBCO) coated conductors with high critical current density property. The long-length TFA-MOD YBCO coated conductors have been fabricated by multi-turn reel-to-reel system. Increasing the thickness per single coating in the multi-turn reel-to-reel system is a cost-effective technique for fabrication of the precursor films in the calcination process since it reduces the number of coatings and shortens the processing time. In this work, we have developed a new starting solution consisting of non-fluorine salts of yttrium propionate and copper 2-ethylhexanoate with focusing on increasing the thickness per single coating for a high-rate fabrication of the YBCO coated conductors by the TFA-MOD method. The critical thickness per single coating of the precursor film fabricated from the new starting solution was improved to 0.44Ī¼m/coat. Furthermore, the addition of diacetoneacrylamide in the new starting solution increased the critical thickness per single coating to 0.79Ī¼m/coat. High critical current of 791 A/cm-width with high critical current density of 2.7 MA/cm2 was obtained using the new starting solution with diacetoneacrylamide at the thickness per single coating of 0.49Ī¼m/coat

    Novel inhibition of archaeal family-D DNA polymerase by uracil.

    Get PDF
    International audienceArchaeal family-D DNA polymerase is inhibited by the presence of uracil in DNA template strands. When the enzyme encounters uracil, following three parameters change: DNA binding increases roughly 2-fold, the rate of polymerization slows by a factor of ā‰ˆ 5 and 3'-5' proof-reading exonuclease activity is stimulated by a factor of ā‰ˆ 2. Together these changes result in a significant decrease in polymerization activity and a reduction in net DNA synthesis. Pol D appears to interact with template strand uracil irrespective of its distance ahead of the replication fork. Polymerization does not stop at a defined location relative to uracil, rather a general decrease in DNA synthesis is observed. 'Trans' inhibition, the slowing of Pol D by uracil on a DNA strand not being replicated is also observed. It is proposed that Pol D is able to interact with uracil by looping out the single-stranded template, allowing simultaneous contact of both the base and the primer-template junction to give a polymerase-DNA complex with diminished extension ability

    Development of High Ic Long REBCO Tapes with High Production Rate by PLD Method

    Get PDF
    AbstractWe have been developing long REBa2Cu3O7-Ī“ coated conductors with high performance by the combination of the IBAD and the PLD methods. To realize the low production cost for REBa2Cu3O7-Ī“ coated conductors, growth conditions were optimized for long tape fabrication in the ā€œin-plume PLD methodā€. As a result, the Ic performance was confirmed with a high production rate under the high oxygen gas pressure and high laser energy density of > 800 mTorr and > 3J/cm2, respectively. We successfully fabricated a 35 m long GdBa2Cu3O7-Ī“ coated conductor with high Ic value of 619 A/cm-w by the production rate of 30 m/h

    "Pudding mold" band drives large thermopower in Nax_xCoO2_2

    Full text link
    In the present study, we pin down the origin of the coexistence of the large thermopower and the large conductivity in Nax_xCoO2_2. It is revealed that not just the density of states (DOS), the effective mass, nor the band width, but the peculiar {\it shape} of the a1ga_{1g} band referred to as the "pudding mold" type, which consists of a dispersive portion and a somewhat flat portion, is playing an important role in this phenomenon. The present study provides a new guiding principle for designing good thermoelectric materials.Comment: 5 page

    Validation and study of different parameters in the simulation of diagnostic X-ray spectra using the MCNPX code

    Get PDF
    In radiology, knowing the X-ray spectrum characteristics makes it possible to estimate the absorbed dose in the patient and to improve image quality. In this study, an X-ray generator was proposed using the MCNPX code and to validate it, the simulated spectrum was compared to the data provided from AAPM Task Group 195, which resulted in a percentage difference of 8.7%. Furthermore, several X-ray spectra were generated and compared to the spectra obtained from commercially available softwares as xpecgen and SpekCalc. The percentage differences were of the order of 13% in comparison with SpekCalc and 8% with xpecgen. The major differences obtained between those spectra were concentrated in the region of characteristic peaks, independently if variations in electron beam energy, target angle or filtration thickness were performed

    Precise Control of Band Filling in NaxCoO2

    Full text link
    Electronic properties of the sodium cobaltate NaxCoO2 are systematically studied through a precise control of band filling. Resistivity, magnetic susceptibility and specific heat measurements are carried out on a series of high-quality polycrystalline samples prepared at 200 C with Na content in a wide range of 0.35 =< x =< 0.70. It is found that dramatic changes in electronic properties take place at a critical Na concentration x* that lies between 0.58 and 0.59, which separates a Pauli paramagnetic and a Curie-Weiss metals. It is suggested that at x* the Fermi level touches the bottom of the a1g band at the gamma point, leading to a crucial change in the density of states across x* and the emergence of a small electron pocket around the gamma point for x > x*.Comment: 4 pages, 5 figures, submitted to J. Phys. Soc. Jp

    Topical Review: Development of overgrown semi-polar GaN for high efficiency green/yellow emission

    Get PDF
    The most successful example of large lattice-mismatched epitaxial growth of semiconductors is the growth of III-nitrides on sapphire, leading to the award of the Nobel Prize in 2014 and great success in developing InGaN-based blue emitters. However, the majority of achievements in the field of III-nitride optoelectronics are mainly limited to polar GaN grown on c-plane (0001) sapphire. This polar orientation poses a number of fundamental issues, such as reduced quantum efficiency, efficiency droop, green and yellow gap in wavelength coverage, etc. To date, it is still a great challenge to develop longer wavelength devices such as green and yellow emitters. One clear way forward would be to grow III-nitride device structures along a semi-/non-polar direction, in particular, a semi-polar orientation, which potentially leads to both enhanced indium incorporation into GaN and reduced quantum confined Stark effects. This review presents recent progress on developing semi-polar GaN overgrowth technologies on sapphire or Si substrates, the two kinds of major substrates which are cost-effective and thus industry-compatible, and also demonstrates the latest achievements on electrically injected InGaN emitters with long emission wavelengths up to and including amber on overgrown semi-polar GaN. Finally, this review presents a summary and outlook on further developments for semi-polar GaN based optoelectronics

    Successful Treatment for Hepatic Encephalopathy Aggravated by Portal Vein Thrombosis with Balloon-Occluded Retrograde Transvenous Obliteration

    Get PDF
    This report presents the case of a 78-year-old female with hepatic encephalopathy due to an inferior mesenteric venous-inferior vena cava shunt. She developed hepatocellular carcinoma affected by hepatitis C virus-related cirrhosis and underwent posterior sectionectomy. Portal vein thrombosis developed and the portal trunk was narrowed after hepatectomy. Portal vein thrombosis resulted in high portal pressure and increased blood flow in an inferior mesenteric venous-inferior vena cava shunt, and hepatic encephalopathy with hyperammonemia was aggravated. The hepatic encephalopathy aggravated by portal vein thrombosis was successfully treated by balloon-occluded retrograde transvenous obliteration via a right transjugular venous approach without the development of other collateral vessels

    The AtXTH28 Gene, a Xyloglucan Endotransglucosylase/Hydrolase, is Involved in Automatic Self-Pollination in Arabidopsis thaliana

    Get PDF
    Successful automatic self-pollination in flowering plants is dependent on the correct development of reproductive organs. In the stamen, the appropriate growth of the filament, which largely depends on the mechanical properties of the cell wall, is required to position the anther correctly close to the stigma at the pollination stage. Xyloglucan endotransglucosylase/hydrolases (XTHs) are a family of enzymes that mediate the construction and restructuring of xyloglucan cross-links, thereby controlling the extensibility or mechanical properties of the cell wall in a wide variety of plant tissues. Our reverse genetic analysis has revealed that a loss-of-function mutation of an Arabidopsis XTH family gene, AtXTH28, led to a decrease in capability for self-pollination, probably due to inhibition of stamen filament growth. Our results also suggest that the role of AtXTH28ā€‰in the development of the stamen is not functionally redundant with its closest paralog, AtXTH27. Thus, our finding indicates that AtXTH28 is specifically involved in the growth of stamen filaments, and is required for successful automatic self-pollination in certain flowers in Arabidopsis thaliana
    • ā€¦
    corecore