3,096 research outputs found
Infrared astronomy research and high altitude observations
Highlights are presented of studies of the emission mechanisms in the 4 to 8 micron region of the spectrum using a circular variable filter wheel spectrometer with a PbSnTe photovoltaic detector. Investigations covered include the spectroscopy of planets, stellar atmospheres, highly obscured objects in molecular clouds, planetary nebulae, H2 regions, and extragalactic objects
Abundances in galactic H2 regions, 3: G25.4-0.2, G45.5+0.06, M8, S159 and DR22
Measurements of the ARII (6.99 microns), ArIII (8.99 microns), NeII (12.81 microns), SIII (18.71 microns), and SIV (10.51 microns) lines are presented for five compact HII regions along with continuum spectroscopy. From these data and radio data, lower limits to the elemental abundances of Ar, S, and Ne were deduced. The complex G25.4-0.2 is only 5.5 kpc from the galactic center, and is considerably overabundant in all these elements. Complex G45.5+0.06 is at seven kpc from the galactic center, and appears to be approximately consistent with solar abundance. The complex S159 in the Perseus Arm, at 12 kpc from the galactic center, has solar abundance, while M8 in the solar neighborhood may be somewhat overabundant in Ar and Ne. Complex DR 22, at 10 kpc from the galactic center in the Cygnus Arm, is overabundant in Ar. A summary of results from a series of papers on abundances is given
High Resolution Molecular Gas Maps of M33
New observations of CO (J=1->0) line emission from M33, using the 25 element
BEARS focal plane array at the Nobeyama Radio Observatory 45-m telescope, in
conjunction with existing maps from the BIMA interferometer and the FCRAO 14-m
telescope, give the highest resolution (13'') and most sensitive (RMS ~ 60 mK)
maps to date of the distribution of molecular gas in the central 5.5 kpc of the
galaxy. A new catalog of giant molecular clouds (GMCs) has a completeness limit
of 1.3 X 10^5 M_sun. The fraction of molecular gas found in GMCs is a strong
function of radius in the galaxy, declining from 60% in the center to 20% at
galactocentric radius R_gal ~ 4 kpc. Beyond that radius, GMCs are nearly
absent, although molecular gas exists. Most (90%) of the emission from low mass
clouds is found within 100 pc projected separation of a GMC. In an annulus 2.1<
R_gal <4.1 kpc, GMC masses follow a power law distribution with index -2.1.
Inside that radius, the mass distribution is truncated, and clouds more massive
than 8 X 10^5 M_sun are absent. The cloud mass distribution shows no
significant difference in the grand design spiral arms versus the interarm
region. The CO surface brightness ratio for the arm to interarm regions is 1.5,
typical of other flocculent galaxies.Comment: 14 pages, 14 figures, accepted in ApJ. Some tables poorly typeset in
emulateapj; see source files for raw dat
The AGN Contribution to the Mid-IR Emission of Luminous Infrared Galaxies
We determine the contribution of AGN to the mid-IR emission of luminous
infrared galaxies (LIRGs) at z>0.6 by measuring the mid-IR dust continuum slope
of 20,039 mid-IR sources. The 24 micron sources are selected from a
Spitzer/MIPS survey of the NOAO Deep Wide-Field Survey Bo\"otes field and have
corresponding 8 micron data from the IRAC Shallow Survey. There is a clear
bimodal distribution in the 24 micron to 8 micron flux ratio. The X-ray
detected sources fall within the peak corresponding to a flat spectrum in
nufnu, implying that it is populated by AGN-dominated LIRGs, whereas the peak
corresponding to a higher 24 micron to 8 micron flux ratio is likely due to
LIRGs whose infrared emission is powered by starbursts. The 24 micron emission
is increasingly dominated by AGN at higher 24 micron flux densities (f_24): the
AGN fraction of the z>0.6 sources increases from ~9% at f_24 ~ 0.35 mJy to
74+/-20% at f_24 ~ 3 mJy in good agreement with model predictions. Deep 24
micron, small area surveys, like GOODS, will be strongly dominated by starburst
galaxies. AGN are responsible for ~ 3-7% of the total 24 micron background.Comment: 6 pages, accepted for publication in Ap
A Significant Population of Very Luminous Dust-Obscured Galaxies at Redshift z ~ 2
Observations with Spitzer Space Telescope have recently revealed a
significant population of high-redshift z~2 dust-obscured galaxies (DOGs) with
large mid-IR to UV luminosity ratios. These galaxies have been missed in
traditional optical studies of the distant universe. We present a simple method
for selecting this high-z population based solely on the ratio of the observed
mid-IR 24um to optical R-band flux density. In the 8.6 sq.deg Bootes NDWFS
Field, we uncover ~2,600 DOG candidates (= 0.089/sq.arcmin) with 24um flux
densities F24>0.3mJy and (R-[24])>14 (i.e., F[24]/F[R] > 1000). These galaxies
have no counterparts in the local universe, and become a larger fraction of the
population at fainter F24, representing 13% of the sources at 0.3~mJy. DOGs
exhibit evidence of both star-formation and AGN activity, with the brighter
24um sources being more AGN- dominated. We have measured spectroscopic
redshifts for 86 DOGs, and find a broad z distribution centered at ~2.0.
Their space density is 2.82E-5 per cubic Mpc, similar to that of bright
sub-mm-selected galaxies at z~2. These redshifts imply very large luminosities
LIR>~1E12-14 Lsun. DOGs contribute ~45-100% of the IR luminosity density
contributed by all z~2 ULIRGs, suggesting that our simple selection criterion
identifies the bulk of z~2 ULIRGs. DOGs may be the progenitors of ~4L*
present-day galaxies seen undergoing a luminous,short- lived phase of bulge and
black hole growth. They may represent a brief evolution phase between SMGs and
less obscured quasars or galaxies. [Abridged]Comment: Accepted for publication in the Astrophysical Journa
Phobos DTM and Coordinate Refinement for Phobos-Grunt Mission Support.
Images obtained by the High Resolution Stereo Camera (HRSC) during recent Phobos flybys were used to study the proposed new landing site area of the Russian Phobos-Grunt mission, scheduled for launch in 2011 [1]. From the stereo images (resolution of up to 4.4 m/pixel), a digital terrain model (DTM) with a lateral resolution of 100 m per pixel and a relative point accuracy of ±15 m, was determined. Images and DTM were registered to the established Phobos control point network [7]. A map of the landing site area was produced enabling mission planers and scientists to extract accurate body-fixed coordinates of features in the Phobos Grunt landing site area
Spitzer IRS Spectra of Optically Faint Infrared Sources with Weak Spectral Features
Spectra have been obtained with the low-resolution modules of the Infrared
Spectrograph (IRS) on the Spitzer Space Telescope (Spitzer) for 58 sources
having f(24 micron) > 0.75 mJy. Sources were chosen from a survey of
8.2 deg within the NOAO Deep Wide-Field Survey region in Bootes (NDWFS)
using the Multiband Imaging Photometer (MIPS) on the Spitzer Space Telescope.
Most sources are optically very faint (I > 24mag). Redshifts have previously
been determined for 34 sources, based primarily on the presence of a deep 9.7
micron silicate absorption feature, with a median z of 2.2. Spectra are
presented for the remaining 24 sources for which we were previously unable to
determine a confident redshift because the IRS spectra show no strong features.
Optical photometry from the NDWFS and infrared photometry with MIPS and the
Infrared Array Camera on the Spitzer Space Telescope (IRAC) are given, with K
photometry from the Keck I telescope for some objects. The sources without
strong spectral features have overall spectral energy distributions (SEDs) and
distributions among optical and infrared fluxes which are similar to those for
the sources with strong absorption features. Nine of the 24 sources are found
to have feasible redshift determinations based on fits of a weak silicate
absorption feature. Results confirm that the "1 mJy" population of 24 micron
Spitzer sources which are optically faint is dominated by dusty sources with
spectroscopic indicators of an obscured AGN rather than a starburst. There
remain 14 of the 58 sources observed in Bootes for which no redshift could be
estimated, and 5 of these sources are invisible at all optical wavelengths.Comment: Accepted by Ap
Molecular observation of contour-length fluctuations limiting topological confinement in polymer melts
In order to study the mechanisms limiting the topological chain confinement in polymer melts, we have performed neutron-spin-echo investigations of the single-chain dynamic-structure factor from polyethylene melts over a large range of chain lengths. While at high molecular weight the reptation model is corroborated, a systematic loosening of the confinement with decreasing chain length is found. The dynamic-structure factors are quantitatively described by the effect of contour-length fluctuations on the confining tube, establishing this mechanism on a molecular level in space and time
- …
