48 research outputs found

    Development and usability testing of a fully immersive VR simulation for REBOA training.

    Get PDF
    BACKGROUND Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a potentially life-saving procedure for bleeding trauma patients. Being a rare and complex procedure performed in extreme situations, repetitive training of REBOA teams is critical. Evidence-based guidelines on how to train REBOA are missing, although simulation-based training has been shown to be effective but can be costly and complex. We aimed to determine the feasibility and acceptance of REBOA training using a fully immersive virtual reality (VR) REBOA simulation, as well as assess the confidence in conducting the REBOA procedure before and after the training. METHODS Prospective feasibility pilot study of prehospital emergency physicians and paramedics in Bern, Switzerland, from November 2020 until March 2021. Baseline characteristics of trainees, prior training and experience in REBOA and with VR, variables of media use (usability: system usability scale, immersion/presence: Slater-Usoh-Steed, workload: NASA-TLX, user satisfaction: USEQ) as well as confidence prior and after VR training were accessed. RESULTS REBOA training in VR was found to be feasible without relevant VR-specific side-effects. Usability (SUS median 77.5, IQR 71.3-85) and sense of presence and immersion (Slater-Usoh-Steed median 4.8, IQR 3.8-5.5) were good, the workload without under-nor overstraining (NASA-TLX median 39, IQR 32.8-50.2) and user satisfaction high (USEQ median 26, IQR 23-29). Confidence of trainees in conducting REBOA increased significantly after training (p < 0.001). CONCLUSIONS Procedural training of the REBOA procedure in immersive virtual reality is possible with a good acceptance and high usability. REBOA VR training can be an important part of a training curriculum, with the virtual reality-specific advantages of a time- and instructor-independent learning

    Track D Social Science, Human Rights and Political Science

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138414/1/jia218442.pd

    Taint-Enhanced Anomaly Detection

    No full text
    Anomaly detection has been popular for a long time due to its ability to detect novel attacks. However, its practical deployment has been limited due to false positives. Taint-based techniques, on the other hand, can avoid false positives for many common exploits (e.g., code or script injection), but their applicability to a broader range of attacks (non-control data attacks, path traversals, race condition attacks, and other unknown attacks) is limited by the need for accurate policies on the use of tainted data. In this paper, we develop a new approach that combines the strengths of these approaches. Our combination is very effective, detecting attack types that have been problematic for taint-based techniques, while significantly cutting down the false positives experienced by anomaly detection. The intuitive justification for this result is that a successful attack involves unusual program behaviors that are exercised by an attacker. Anomaly detection identifies unusual behaviors, while fine-grained taint can filter out behaviors that do not seem controlled by attacker-provided data

    Additional file 1 of Development and usability testing of a fully immersive VR simulation for REBOA training

    No full text
    Additional file 1. Some free-text comments from participants. Free-text responses were collected with an open response item. Comments of the participants generally indicated a good acceptance. However, critical aspects were illuminated as well

    Quantitative myocardial first-pass cardiovascular magnetic resonance perfusion imaging using hyperpolarized [1-13C] pyruvate

    Full text link
    BACKGROUND: The feasibility of absolute myocardial blood flow quantification and suitability of hyperpolarized [1-13C] pyruvate as contrast agent for first-pass cardiovascular magnetic resonance (CMR) perfusion measurements are investigated with simulations and demonstrated in vivo in a swine model. METHODS: A versatile simulation framework for hyperpolarized CMR subject to physical, physiological and technical constraints was developed and applied to investigate experimental conditions for accurate perfusion CMR with hyperpolarized [1-13C] pyruvate. Absolute and semi-quantitative perfusion indices were analyzed with respect to experimental parameter variations and different signal-to-noise ratio (SNR) levels. Absolute myocardial blood flow quantification was implemented with an iterative deconvolution approach based on Fermi functions. To demonstrate in vivo feasibility, velocity-selective excitation with an echo-planar imaging readout was used to acquire dynamic myocardial stress perfusion images in four healthy swine. Arterial input functions were extracted from an additional image slice with conventional excitation that was acquired within the same heartbeat. RESULTS: Simulations suggest that obtainable SNR and B0 inhomogeneity in vivo are sufficient for the determination of absolute and semi-quantitative perfusion with ≤25% error. It is shown that for expected metabolic conversion rates, metabolic conversion of pyruvate can be neglected over the short duration of acquisition in first-pass perfusion CMR. In vivo measurements suggest that absolute myocardial blood flow quantification using hyperpolarized [1-13C] pyruvate is feasible with an intra-myocardial variability comparable to semi-quantitative perfusion indices. CONCLUSION: The feasibility of quantitative hyperpolarized first-pass perfusion CMR using [1-13C] pyruvate has been investigated in simulations and demonstrated in swine. Using an approved and metabolically active compound is envisioned to increase the value of hyperpolarized perfusion CMR in patients
    corecore