112 research outputs found

    Electrical Transport in High Quality Graphene pnp Junctions

    Full text link
    We fabricate and investigate high quality graphene devices with contactless, suspended top gates, and demonstrate formation of graphene pnp junctions with tunable polarity and doping levels. The device resistance displays distinct oscillations in the npn regime, arising from the Fabry-Perot interference of holes between the two pn interfaces. At high magnetic fields, we observe well-defined quantum Hall plateaus, which can be satisfactorily fit to theoretical calculations based on the aspect ratio of the device.Comment: to appear in a special focus issue in New Journal of Physic

    Significance Analysis of Time Course Microarray Experiments

    Get PDF
    Characterizing the genome-wide dynamic regulation of gene expression is important and will be of much interest in the future. However, there is currently no established method for identifying differentially expressed genes in a time course study. Here we propose a significance method for analyzing time course microarray studies that can be applied to the typical types of comparisons and sampling schemes. This method is applied to two studies on humans. In one study, genes are identified that show differential expression over time in response to in vivo endotoxin administration. Using our method 7409 genes are called significant at a 1% FDR level, whereas several existing approaches fail to identify any genes. In another study, 417 genes are identified at a 10% FDR level that show expression changing with age in the kidney cortex. Here it is also shown that as many as 47% of the genes change with age in a manner more complex than simple exponential growth or decay. The methodology proposed here has been implemented in the freely distributed and open-source EDGE software package

    Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface

    Full text link
    We report on infrared (IR) nanoscopy of 2D plasmon excitations of Dirac fermions in graphene. This is achieved by confining mid-IR radiation at the apex of a nanoscale tip: an approach yielding two orders of magnitude increase in the value of in-plane component of incident wavevector q compared to free space propagation. At these high wavevectors, the Dirac plasmon is found to dramatically enhance the near-field interaction with mid-IR surface phonons of SiO2 substrate. Our data augmented by detailed modeling establish graphene as a new medium supporting plasmonic effects that can be controlled by gate voltage.Comment: 12 pages, 4 figure

    Association of Genetic Variants of Melatonin Receptor 1B with Gestational Plasma Glucose Level and Risk of Glucose Intolerance in Pregnant Chinese Women

    Get PDF
    BACKGROUND: This study aimed to explore the association of MTNR1B genetic variants with gestational plasma glucose homeostasis in pregnant Chinese women. METHODS: A total of 1,985 pregnant Han Chinese women were recruited and evaluated for gestational glucose tolerance status with a two-step approach. The four MTNR1B variants rs10830963, rs1387153, rs1447352, and rs2166706 which had been reported to associate with glucose levels in general non-pregnant populations, were genotyped in these women. Using an additive model adjusted for age and body mass index (BMI), association of these variants with gestational fasting and postprandial plasma glucose (FPG and PPG) levels were analyzed by multiple linear regression; relative risk of developing gestational glucose intolerance was calculated by logistic regression. Hardy-Weinberg Equilibrium was tested by Chi-square and linkage disequilibrium (LD) between these variants was estimated by measures of D' and r(2). RESULTS: In the pregnant Chinese women, the MTNR1B variant rs10830963, rs1387153, rs2166706 and rs1447352 were shown to be associated with the increased 1 hour PPG level (p=8.04 × 10(-10), 5.49 × 10(-6), 1.89 × 10(-5) and 0.02, respectively). The alleles were also shown to be associated with gestational glucose intolerance with odds ratios (OR) of 1.64 (p=8.03 × 10(-11)), 1.43 (p=1.94 × 10(-6)), 1.38 (p=1.63 × 10(-5)) and 1.24 (p=0.007), respectively. MTNR1B rs1387153, rs2166706 were shown to be associated with gestational FPG levels (p=0.04). Our data also suggested that, the LD pattern of these variants in the studied women conformed to that in the general populations: rs1387153 and rs2166706 were in high LD, they linked moderately with rs10830963, but might not linked with rs1447352;rs10830963 might not link with rs1447352, either. In addition, the MTNR1B variants were not found to be associated with any other traits tested. CONCLUSIONS: The MTNR1B is likely to be involved in the regulation of glucose homeostasis during pregnancy

    SUMOylation Represses Nanog Expression via Modulating Transcription Factors Oct4 and Sox2

    Get PDF
    Nanog is a pivotal transcription factor in embryonic stem (ES) cells and is essential for maintaining the pluripotency and self-renewal of ES cells. SUMOylation has been proved to regulate several stem cell markers' function, such as Oct4 and Sox2. Nanog is strictly regulated by Oct4/Sox2 heterodimer. However, the direct effects of SUMOylation on Nanog expression remain unclear. In this study, we reported that SUMOylation repressed Nanog expression. Depletion of Sumo1 or its conjugating enzyme Ubc9 increased the expression of Nanog, while high SUMOylation reduced its expression. Interestingly, we found that SUMOylation of Oct4 and Sox2 regulated Nanog in an opposing manner. SUMOylation of Oct4 enhanced Nanog expression, while SUMOylated Sox2 inhibited its expression. Moreover, SUMOylation of Oct4 by Pias2 or Sox2 by Pias3 impaired the interaction between Oct4 and Sox2. Taken together, these results indicate that SUMOylation has a negative effect on Nanog expression and provides new insights into the mechanism of SUMO modification involved in ES cells regulation

    Aryl Functionalization as a Route to Band Gap Engineering in Single Layer Graphene Devices

    Full text link
    Chemical functionalization is a promising route to band gap engineering of graphene. We chemically grafted nitrophenyl groups onto exfoliated single-layer graphene sheets in the form of substrate-supported or free-standing films. Our transport measurements demonstrate that non-suspended functionalized graphene behaves as a granular metal, with variable range hopping transport and a mobility gap ~ 0.1 eV at low temperature. For suspended graphene that allows functionalization on both surfaces, we demonstrate tuning of its electronic properties from a granular metal to a gapped semiconductor, in which charge transport occurs via thermal activation over a gap ~ 80 meV. This non-invasive and scalable functionalization technique paves the way for CMOS-compatible band gap engineering of graphene electronic devices

    Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alfalfa, [<it>Medicago sativa </it>(L.) sativa], a widely-grown perennial forage has potential for development as a cellulosic ethanol feedstock. However, the genomics of alfalfa, a non-model species, is still in its infancy. The recent advent of RNA-Seq, a massively parallel sequencing method for transcriptome analysis, provides an opportunity to expand the identification of alfalfa genes and polymorphisms, and conduct in-depth transcript profiling.</p> <p>Results</p> <p>Cell walls in stems of alfalfa genotype 708 have higher cellulose and lower lignin concentrations compared to cell walls in stems of genotype 773. Using the Illumina GA-II platform, a total of 198,861,304 expression sequence tags (ESTs, 76 bp in length) were generated from cDNA libraries derived from elongating stem (ES) and post-elongation stem (PES) internodes of 708 and 773. In addition, 341,984 ESTs were generated from ES and PES internodes of genotype 773 using the GS FLX Titanium platform. The first alfalfa (<it>Medicago sativa</it>) gene index (MSGI 1.0) was assembled using the Sanger ESTs available from GenBank, the GS FLX Titanium EST sequences, and the <it>de novo </it>assembled Illumina sequences. MSGI 1.0 contains 124,025 unique sequences including 22,729 tentative consensus sequences (TCs), 22,315 singletons and 78,981 pseudo-singletons. We identified a total of 1,294 simple sequence repeats (SSR) among the sequences in MSGI 1.0. In addition, a total of 10,826 single nucleotide polymorphisms (SNPs) were predicted between the two genotypes. Out of 55 SNPs randomly selected for experimental validation, 47 (85%) were polymorphic between the two genotypes. We also identified numerous allelic variations within each genotype. Digital gene expression analysis identified numerous candidate genes that may play a role in stem development as well as candidate genes that may contribute to the differences in cell wall composition in stems of the two genotypes.</p> <p>Conclusions</p> <p>Our results demonstrate that RNA-Seq can be successfully used for gene identification, polymorphism detection and transcript profiling in alfalfa, a non-model, allogamous, autotetraploid species. The alfalfa gene index assembled in this study, and the SNPs, SSRs and candidate genes identified can be used to improve alfalfa as a forage crop and cellulosic feedstock.</p

    Field emission properties of Cu/multiwalled carbon nanotube composite films fabricated by an electrodeposition technique

    Get PDF
    Composite films of Cu and multiwalled carbon nanotubes (MWCNTs) were fabricated by an electrodeposition technique, and their field emission properties were examined. Commercially available MWCNTs with various diameters (60-150 nm) were used. The microstructure of the composite films was analyzed by scanning electron microscopy and the field emission properties were measured using a diode-type system. Cu/MWCNT composite films with homogeneous dispersion of MWCNTs were fabricated using each type of MWCNT. Bare MWCNTs were present on the surface of the composite films and the ends of the protruding tips were fixed by the deposited copper matrix. The composite films produced clear emission currents and the corresponding Fowler-Nordheim (F-N) plots showed that these were field emission currents. The turn-on electric field tended to decrease with decreasing MWCNT diameter. A light-emitting device incorporating the Cu/MWCNT composite film as a field emitter was fabricated, and its light-emitting properties were investigated. Light emission with a brightness of around 100 cd m(-2) was observed for approximately 100 h.ArticleJOURNAL OF APPLIED ELECTROCHEMISTRY. 43(4):399-405 (2013)journal articl
    corecore