547 research outputs found

    Time-dependent local Green's operator and its applications to manganites

    Full text link
    An algorithm is presented to calculate the electronic local time-dependent Green's operator for manganites-related hamiltonians. This algorithm is proved to scale with the number of states NN in the Hilbert-space to the 1.55 power, is able of parallel implementation, and outperforms computationally the Exact Diagonalization (ED) method for clusters larger than 64 sites (using parallelization). This method together with the Monte Carlo (MC) technique is used to derive new results for the manganites phase diagram for the spatial dimension D=3 and half-filling on a 12x12x12 cluster (3456 orbitals). We obtain as a function of an insulating parameter, the sequence of ground states given by: ferromagnetic (FM), antiferromagnetic AF-type A, AF-type CE, dimer and AF-type G, which are in remarkable agreement with experimental results.Comment: 9 pages, 11 figure

    Numerical resonances for Schottky surfaces via Lagrange-Chebyshev approximation

    Get PDF
    We present a numerical method to calculate resonances of Schottky surfaces based on Selberg theory, transfer operator techniques and Lagrange-Chebyshev approximation. This method is an alternative to the method based on periodic orbit expansion used previously in this context.Comment: 26 pages, 10 figures, v2: more references and details adde

    Nanoscale quantum dot infrared sensors with photonic crystal cavity

    Get PDF
    We report high performance infrared sensors that are based on intersubband transitions in nanoscale self-assembled quantum dots combined with a microcavity resonator made with a high-index-contrast two-dimensional photonic crystal. The addition of the photonic crystal cavity increases the photocurrent, conversion efficiency, and the signal to noise ratio (represented by the specific detectivity D*) by more than an order of magnitude. The conversion efficiency of the detector at Vb=–2.6 V increased from 7.5% for the control sample to 95% in the PhC detector. In principle, these photonic crystal resonators are technology agnostic and can be directly integrated into the manufacturing of present day infrared sensors using existing lithographic tools in the fabrication facility

    Wave climate in the Arkona Basin, the Baltic Sea

    Get PDF
    The basic features of the wave climate in the Southwestern Baltic Sea (such as the average and typical wave conditions, frequency of occurrence of different wave parameters, variations in wave heights from weekly to decadal scales) are established based on waverider measurements at the Darss Sill in 1991–2010. The measured climate is compared with two numerical simulations with the WAM wave model driven by downscaled reanalysis of wind fields for 1958–2002 and by adjusted geostrophic winds for 1970–2007. The wave climate in this region is typical for semi-enclosed basins of the Baltic Sea. The maximum wave heights are about half of those in the Baltic Proper. The maximum recorded significant wave height <i>H</i><sub>S</sub> =4.46 m occurred on 3 November 1995. The wave height exhibits no long-term trend but reveals modest interannual (about 12 % of the long-term mean of 0.76 m) and substantial seasonal variation. The wave periods are mostly concentrated in a narrow range of 2.6–4 s. Their distribution is almost constant over decades. The role of remote swell is very small

    Photosynthetic and growth response of freshwater picocyanobacteria are strain-specific and sensitive to photoacclimation

    Get PDF
    We investigated the effect of different light conditions on primary production and growth rates of three closely related freshwater picocyanobacterial strains from three different ribotypes in laboratory cultures. The primary goal was to test whether not only different pigment types (PC-rich versus PE-rich) but also other physiological characteristics suggested by different phylogenetic positions could affect growth and photosynthetic rates of picocyanobacteria. Secondly, we tested whether photacclimation is strain specific. Experiments were conducted over light intensities ranging from 6 to 1500 μmol photons m−2 s−1 with cultures that were acclimated to low (10 μmol photons m−2 s−1) and moderate (100 μmol photons m−2 s−1) irradiance. The PE-rich strain was sensitive to high light conditions and reached highest photosynthesis and growth rates at low light intensities. The relative effect of photoacclimation was different between the two PC-rich strains, with one strain showing only moderate changes in growth rates in response to the light level used during the acclimation period. Overall, growth rates differed widely in response to light intensity and photoacclimation. Photoacclimation significantly affected both primary production and growth rates of all three strains investigated. We conclude that strain-specific photoacclimation adds to the niche partitioning among closely related freshwater picocyanobacteria

    What did we learn from the extraction experiments with bent crystals at the CERN SPS?

    Get PDF
    The feasibility and properties of particle extraction from an accelerator by means of a bent crystal were studied extensively at the CERN SPS. The main results of the experiments are presented. This includes the evidence for multipass extraction of heavy ions. These results are compared with theoretical expectations and computer simulations

    On the dynamics of coupled S=1/2 antiferromagnetic zig-zag chains

    Full text link
    We investigate the elementary excitations of quasi one-dimensional S=1/2 systems built up from zig-zag chains with general isotropic exchange constants, using exact (Lanczos) diagonalization for 24 spins and series expansions starting from the decoupled dimer limit. For the ideal one-dimensional zig-zag chain we discuss the systematic variation of the basic (magnon) triplet excitation with general exchange parameters and in particular the presence of practically flat dispersions in certain regions of phase space. We extend the dimer expansion in order to include the effects of 3D interactions on the spectra of weakly interacting zig-zag chains. In an application to KCuCl_3 we show that this approach allows to determine the exchange interactions between individual pairs of spins from the spectra as determined in recent neutron scattering experiments.Comment: 8 pages, 9 figures; some changes, figure added; final versio

    On the energy dependence of proton beam extraction with a bent crystal

    Get PDF
    Proton beam extraction from the CERN SPS by means of a bent silicon crystal is reported at three different energies, 14 GeV, 120 GeV and 270 GeV. The experimental results are compared to computer simulations which contain a sound model of the SPS accelerator as well as the channeling phenomena in bent crystals. The overall energy dependence of crystal assisted proton beam extraction is understood and provides the basis to discuss such a scheme for future accelerators
    corecore