24 research outputs found

    ETosis: A Microbicidal Mechanism beyond Cell Death

    Get PDF
    Netosis is a recently described type of neutrophil death occurring with the release to the extracellular milieu of a lattice composed of DNA associated with histones and granular and cytoplasmic proteins. These webs, initially named neutrophil extracellular traps (NETs), ensnare and kill microorganisms. Similarly, other cell types, such as eosinophils, mast cells, and macrophages, can also dye by this mechanism; thus, it was renamed as ETosis, meaning death with release of extracellular traps (ETs). Here, we review the mechanism of NETosis/etosis, emphasizing its role in diseases caused by protozoan parasites, fungi, and viruses

    A systematic review and meta-analysis of the effectiveness of virtual reality as an exercise intervention for individuals with a respiratory condition.

    Get PDF
    Background Respiratory diseases impose an immense health burden worldwide and affect millions of people on a global scale. Reduction of exercise tolerance poses a huge health issue affecting patients with a respiratory condition, which is caused by skeletal muscle dysfunction and weakness and by lung function impairment. Virtual reality systems are emerging technologies that have drawn scientists’ attention to its potential benefit for rehabilitation. Methods A systematic review and meta-analysis following the PRISMA guidelines was performed to explore the effectiveness of virtual reality gaming and exergaming-based interventions on individuals with respiratory conditions. Results Differences between the virtual reality intervention and traditional exercise rehabilitation revealed weak to insignificant effect size for mean heart rate (standardized mean difference, SMD = 0.17; p = 0.002), peak heart rate (SMD = 0.36; p = 0.27), dyspnea (SMD = 0.32; p = 0.13), and oxygen saturation SpO2 (SMD = 0.26; p = 0.096). In addition, other measures were collected, however, to the heterogeneity of reporting, could not be included in the meta-analysis. These included adherence, enjoyment, and drop-out rates. Conclusions The use of VRS as an intervention can provide options for rehabilitation, given their moderate effect for dyspnea and equivalent to weak effect for mean and maximum peak HR and SpO2. However, the use of virtual reality systems, as an intervention, needs further study since the literature lacks standardized methods to accurately analyze the effects of virtual reality for individuals with respiratory conditions, especially for duration, virtual reality system type, adherence, adverse effects, feasibility, enjoyment, and quality of life

    Programmed cell death and its role in inflammation

    Get PDF
    Cell death plays an important role in the regulation of inflammation and may be the result of inflammation. The maintenance of tissue homeostasis necessitates both the recognition and removal of invading microbial pathogens as well as the clearance of dying cells. In the past few decades, emerging knowledge on cell death and inflammation has enriched our molecular understanding of the signaling pathways that mediate various programs of cell death and multiple types of inflammatory responses. This review provides an overview of the major types of cell death related to inflammation. Modification of cell death pathways is likely to be a logical therapeutic target for inflammatory diseases

    Green signals for life and death

    No full text

    Exsolution-Driven Surface Transformation in the Host Oxide

    No full text
    Exsolution synthesizes self-assembled metal nanoparticle catalysts via phase precipitation. An overlooked aspect in this method thus far is how exsolution affects the host oxide surface chemistry and structure. Such information is critical as the oxide itself can also contribute to the overall catalytic activity. Combining X-ray and electron probes, we investigated the surface transformation of thin-film SrTi0.65Fe0.35O3 during Fe0 exsolution. We found that exsolution generates a highly Fe-deficient near-surface layer of about 2 nm thick. Moreover, the originally single-crystalline oxide near-surface region became partially polycrystalline after exsolution. Such drastic transformations at the surface of the oxide are important because the exsolution-induced nonstoichiometry and grain boundaries can alter the oxide ion transport and oxygen exchange kinetics and, hence, the catalytic activity toward water splitting or hydrogen oxidation reactions. These findings highlight the need to consider the exsolved oxide surface, in addition to the metal nanoparticles, in designing the exsolved nanocatalysts
    corecore