35,179 research outputs found

    Interaction between graphene and SiO2 surface

    Full text link
    With first-principles DFT calculations, the interaction between graphene and SiO2 surface has been analyzed by constructing the different configurations based on {\alpha}-quartz and cristobalite structures. The single layer graphene can stay stably on SiO2 surface is explained based on the general consideration of configuration structures of SiO2 surface. It is also found that the oxygen defect in SiO2 surface can shift the Fermi level of graphene down which opens out the mechanism of hole-doping effect of graphene absorbed on SiO2 surface observed in experiments.Comment: 17 pages, 7 figure

    Standard model plethystics

    Get PDF
    We study the vacuum geometry prescribed by the gauge invariant operators of the minimal supersymmetric standard model via the plethystic program. This is achieved by using several tricks to perform the highly computationally challenging Molien-Weyl integral, from which we extract the Hilbert series, encoding the invariants of the geometry at all degrees. The fully refined Hilbert series is presented as the explicit sum of 1422 rational functions. We found a good choice of weights to unrefine the Hilbert series into a rational function of a single variable, from which we can read off the dimension and the degree of the vacuum moduli space of the minimal supersymmetric standard model gauge invariants. All data in Mathematica format are also presented

    Raman spectroscopy of epitaxial graphene on a SiC substrate

    Full text link
    The fabrication of epitaxial graphene (EG) on SiC substrate by annealing has attracted a lot of interest as it may speed up the application of graphene for future electronic devices. The interaction of EG and the SiC substrate is critical to its electronic and physical properties. In this work, Raman spectroscopy was used to study the structure of EG and its interaction with SiC substrate. All the Raman bands of EG blue shift from that of bulk graphite and graphene made by micromechanical cleavage, which was attributed to the compressive strain induced by the substrate. A model containing 13 x 13 honeycomb lattice cells of graphene on carbon nanomesh was constructed to explain the origin of strain. The lattice mismatch between graphene layer and substrate causes the compressive stress of 2.27 GPa on graphene. We also demonstrate that the electronic structures of EG grown on Si and C terminated SiC substrates are quite different. Our experimental results shed light on the interaction between graphene and SiC substrate that are critical to the future applications of EG.Comment: 20 pages, 5 figure
    corecore