484 research outputs found

    Fermi surface of the colossal magnetoresistance perovskite La_{0.7}Sr_{0.3}MnO_{3}

    Full text link
    Materials that exhibit colossal magnetoresistance (CMR) are currently the focus of an intense research effort, driven by the technological applications that their sensitivity lends them to. Using the angular correlation of photons from electron-positron annihilation, we present a first glimpse of the Fermi surface of a material that exhibits CMR, supported by ``virtual crystal'' electronic structure calculations. The Fermi surface is shown to be sufficiently cubic in nature that it is likely to support nesting.Comment: 5 pages, 5 PS figure

    Dispersive Gap Mode of Phonons in Anisotropic Superconductors

    Full text link
    We estimate the effect of the superconducting gap anisotropy in the dispersive gap mode of phonons, which is observed by the neutron scattering on borocarbide superconductors. We numerically analyze the phonon spectrum considering the electron-phonon coupling, and examine contributions coming from the gap suppression and the sign change of the pairing function on the Fermi surface. When the sign of the pairing function is changed by the nesting translation, the gap mode does not appear. We also discuss the suppression of the phonon softening of the Kohn anomaly due to the onset of superconductivity. We demonstrate that observation of the gap dispersive mode is useful for sorting out the underlying superconducting pairing function.Comment: 7 pages, 12 figures, to be published in J. Phys. Soc. Jp

    Superconductivity Near Ferromagnetism in MgCNi3

    Full text link
    An unusual quasi-two-dimensional heavy band mass van Hove singularity (vHs) lies very near the Fermi energy in MgCNi3, recently reported to superconduct at 8.5 K. This compound is strongly exchange enhanced and is unstable to ferromagnetism upon hole doping with 12% Mg --> Na or Li. The 1/4-depleted fcc (frustrated) Ni sublattice and lack of Fermi surface nesting argues against competing antiferromagnetic and charge density wave instabilities. We identify an essentially infinite mass along the M-Gamma line, leading to quasi-two-dimensionality of this vHs may promote unconventional p-wave pairing that could coexist with superconductivity.Comment: 4 two-column pages, 4 figure

    Colossal Positive Magnetoresistance in a Doped Nearly Magnetic Semiconductor

    Get PDF
    We report on a positive colossal magnetoresistance (MR) induced by metallization of FeSb2_{2}, a nearly magnetic or "Kondo" semiconductor with 3d ions. We discuss contribution of orbital MR and quantum interference to enhanced magnetic field response of electrical resistivity.Comment: 5 pages, 5 figure

    Nesting properties and anisotropy of the Fermi surface of LuNi2_{2}B2_{2}C

    Full text link
    The rare earth nickel borocarbides, with the generic formula RRNi2_{2}B2_{2}C, have recently been shown to display a rich variety of phenomena. Most striking has been the competition between, and even coexistence of, antiferromagnetism and superconductivity. We have measured the Fermi surface (FS) of LuNi2_{2}B2_{2}C, and shown that it possesses nesting features capable of explaining some of the phenomena experimentally observed. In particular, it had previously been conjectured that a particular sheet of FS is responsible for the modulated magnetic structures manifest in some of the series. We report the first direct experimental observation of this sheet.Comment: 4 pages, 4 PS figure

    Core pinning by intragranular nanoprecipitates in polycrystalline MgCNi_3

    Full text link
    The nanostructure and magnetic properties of polycrystalline MgCNi_3 were studied by x-ray diffraction, electron microscopy, and vibrating sample magnetometry. While the bulk flux-pinning force curve F_p(H) indicates the expected grain-boundary pinning mechanism just below T_c = 7.2 K, a systematic change to pinning by a nanometer-scale distribution of core pinning sites is indicated by a shift of F_p(H) with decreasing temperature. The lack of scaling of F_p(H) suggests the presence of 10 to 20% of nonsuperconducting regions inside the grains, which are smaller than the diameter of fluxon cores 2xi at high temperature and become effective with decreasing temperature when xi(T) approaches the nanostructural scale. Transmission electron microscopy revealed cubic and graphite nanoprecipitates with 2 to 5 nm size, consistent with the above hypothesis since xi(0) = 6 nm. High critical current densities, more than 10^6 A/cm^2 at 1 T and 4.2 K, were obtained for grain colonies separated by carbon. Dirty-limit behavior seen in previous studies may be tied to electron scattering by the precipitates, indicating the possibility that strong core pinning might be combined with a technologically useful upper critical field if versions of MgCNi_3 with higher T_c can be found.Comment: 5 pages, 6 figures, submitted to PR

    The mechanical relaxation study of polycrystalline MgCNi3

    Full text link
    The mechanical relaxation spectra of a superconducting and a non-superconducting MgCNi3 samples were measured from liquid nitrogen temperature to room temperature at frequency of kilohertz. There are two internal friction peaks (at 300 K labeled as P1 and 125 K as P2) for the superconducting sample. For the non-superconducting one, the position of P1 shifts to 250 K, while P2 is almost completely depressed. It is found that the peak position of P2 shifts towards higher temperature under higher measuring frequency. The calculated activation energy is 0.13eV. We propose an explanation relating P2 to the carbon atom jumping among the off-center positions. And further we expect that the behaviors of carbon atoms maybe correspond to the normal state crossovers around 150 K and 50 K observed by many other experiments.Comment: 4 figure

    Social effects on age-related and sex-specific immune cell profiles in a wild mammal

    Get PDF
    Evidence for age-related changes in innate and adaptive immune responses is increasing in wild populations. Such changes have been linked to fitness, and knowledge of the factors driving immune response variation is important for understanding the evolution of immunity. Age-related changes in immune profiles may be owing to factors such as immune system development, sex-specific behaviour and responses to environmental conditions. Social environments may also contribute to variation in immunological responses, for example, through transmission of pathogens and stress arising from resource and mate competition. Yet, the impact of the social environment on age-related changes in immune cell profiles is currently understudied in the wild. Here, we tested the relationship between leukocyte cell composition (proportion of neutrophils and lymphocytes [innate and adaptive immunity, respectively] that were lymphocytes) and age, sex and group size in a wild population of European badgers (Meles meles). We found that the proportion of lymphocytes in early life was greater in males in smaller groups compared to larger groups, but with a faster age-related decline in smaller groups. By contrast, the proportion of lymphocytes in females was not significantly related to age or group size. Our results provide evidence of sex-specific age-related changes in immune cell profiles in a wild mammal, which are influenced by the social environment

    Thermopower and thermal conductivity of superconducting perovskite MgCNi3MgCNi_3

    Full text link
    The thermopower and thermal conductivity of superconducting perovskite MgCNi3MgCNi_3 (Tc≈T_c \approx 8 K) have been studied. The thermopower is negative from room temperature to 10 K. Combining with the negative Hall coefficient reported previously, the negative thermopower definetly indicates that the carrier in MgCNi3MgCNi_3 is electron-type. The nonlinear temperature dependence of thermopower below 150 K is explained by the electron-phonon interaction renormalization effects. The thermal conductivity is of the order for intermetallics, larger than that of borocarbides and smaller than MgB2MgB_2. In the normal state, the electronic contribution to the total thermal conductivity is slightly larger than the lattice contribution. The transverse magnetoresistance of MgCNi3MgCNi_3 is also measured. It is found that the classical Kohler's rule is valid above 50 K. An electronic crossover occures at T∗∼50KT^* \sim 50 K, resulting in the abnormal behavior of resistivity, thermopower, and magnetoresistance below 50 K.Comment: Revised on 12 September 2001, Phys. Rev. B in pres

    X-ray absorption and optical spectroscopy studies of (Mg1−x_{1-x}Alx_x)B2_2

    Full text link
    X-ray absorption spectroscopy and optical reflectance measurements have been carried out to elucidate the evolution of the electronic structure in (Mg1−x_{1-x}Alx_{x})B2_{2} for \emph{x} = 0.0,0.1, 0.2, 0.3, and 0.4. The important role of B 2\emph{p} σ\sigma hole states to superconductivity has been identified, and the decrease in the hole carrier number is \emph{quantitatively} determined. The rate of the decrease in the hole concentration agree well with the theoretical calculations. On the other hand,while the evolution of the electronic structure is gradual through the doping range, TcT_c suppression is most significant at \emph{x} = 0.4. These results suggest that the superstructure in (Mg1−x_{1-x}Alx_{x})B2_{2}, in addition to the σ\sigma holes, can affect the lattice dynamics and contributes to the TcT_c suppression effect. Other possible explanations like the topological change of the σ\sigma band Fermi surface are also discussed.Comment: 17 pages, 5 figures. Phys. Rev. B, in pres
    • …
    corecore