43 research outputs found

    Eating patterns and overweight in 9- to 10-year-old children in Telemark County, Norway: a cross-sectional study

    Get PDF
    Background/Objectives: Increasing prevalence of overweight in children is a growing health problem. The aim of this study was to describe the eating patterns of 9-to 10-year-old schoolchildren, and to investigate the relationship between overweight and eating patterns. Subjects/Methods: We recruited 1045 children for a cross-sectional study in Telemark County, Norway. The children's food, snacking and meal frequencies were reported by their parents using a retrospective food frequency questionnaire. Height and weight were measured by health professionals, and body mass index categories were calculated using international standard cutoff points (International Obesity Task Force values). Complete data were obtained for 924 children. Four distinct eating patterns were identified using principal component analysis. We used multiple logistic regression and calculated odds ratios (ORs) with 95% confidence intervals (CIs) for being overweight, and adjusted for parental characteristics and physical activity levels of the children (aORs). Results: Parental characteristics and physical activity were associated with both obesity and eating patterns. Children adhering to a 'junk/convenient' eating pattern had a significantly lower likelihood of being overweight (aOR: 0.6; 95% CI: 0.4, 0.9), whereas children adhering to a 'varied Norwegian' or a 'dieting' eating pattern had a significantly higher likelihood of being overweight (respective values: aOR: 2.1; 95% CI: 1.3, 3.2; aOR: 2.2; 95% CI: 1.4, 3.4). No association with overweight was seen for a 'snacking pattern'. Conclusions: The main finding was that, although family characteristics influenced both the prevalence of overweight and overall dietary behaviour, independent associations were evident between eating patterns and overweight, indicating parental modification of the diets of overweight children

    NK-like homeodomain proteins activate NOTCH3-signaling in leukemic T-cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Homeodomain proteins control fundamental cellular processes in development and in cancer if deregulated. Three members of the NK-like subfamily of homeobox genes (NKLs), TLX1, TLX3 and NKX2-5, are implicated in T-cell acute lymphoblastic leukemia (T-ALL). They are activated by particular chromosomal aberrations. However, their precise function in leukemogenesis is still unclear. Here we screened further NKLs in 24 T-ALL cell lines and identified the common expression of MSX2. The subsequent aim of this study was to analyze the role of MSX2 in T-cell differentiation which may be disturbed by oncogenic NKLs.</p> <p>Methods</p> <p>Specific gene activity was examined by quantitative real-time PCR, and globally by expression profiling. Proteins were analyzed by western blot, immuno-cytology and immuno-precipitation. For overexpression studies cell lines were transduced by lentiviruses.</p> <p>Results</p> <p>Quantification of MSX2 mRNA in primary hematopoietic cells demonstrated higher levels in CD34+ stem cells as compared to peripheral blood cells and mature CD3+ T-cells. Furthermore, analysis of MSX2 expression levels in T-cell lines after treatment with core thymic factors confirmed their involvement in regulation. These results indicated that MSX2 represents an hematopoietic NKL family member which is downregulated during T-cell development and may functionally substituted by oncogenic NKLs. For functional analysis JURKAT cells were lentivirally transduced, overexpressing either MSX2 or oncogenic TLX1 and NKX2-5, respectively. These cells displayed transcriptional activation of NOTCH3-signaling, including NOTCH3 and HEY1 as analyzed by gene expression profiling and quantitative RT-PCR, and consistently attenuated sensitivity to gamma-secretase inhibitor as analyzed by MTT-assays. Furthermore, in addition to MSX2, both TLX1 and NKX2-5 proteins interacted with NOTCH-pathway repressors, SPEN/MINT/SHARP and TLE1/GRG1, representing a potential mechanism for (de)regulation. Finally, elevated expression of NOTCH3 and HEY1 was detected in primary TLX1/3 positive T-ALL cells corresponding to the cell line data.</p> <p>Conclusion</p> <p>Identification and analysis of MSX2 in hematopoietic cells implicates a modulatory role via NOTCH3-signaling in early T-cell differentiation. Our data suggest that reduction of NOTCH3-signaling by physiological downregulation of MSX2 expression during T-cell development is abrogated by ectopic expression of oncogenic NKLs, substituting MSX2 function.</p

    Notch signaling as a therapeutic target for breast cancer treatment?

    Get PDF
    Aberrant Notch signaling can induce mammary gland carcinoma in transgenic mice, and high expressions of Notch receptors and ligands have been linked to poor clinical outcomes in human patients with breast cancer. This suggests that inhibition of Notch signaling may be beneficial for breast cancer treatment. In this review, we critically evaluate the evidence that supports or challenges the hypothesis that inhibition of Notch signaling would be advantageous in breast cancer management. We find that there are many remaining uncertainties that must be addressed experimentally if we are to exploit inhibition of Notch signaling as a treatment approach in breast cancer. Nonetheless, Notch inhibition, in combination with other therapies, is a promising avenue for future management of breast cancer. Furthermore, since aberrant Notch4 activity can induce mammary gland carcinoma in the absence of RBPjκ, a better understanding of the components of RBPjκ-independent oncogenic Notch signaling pathways and their contribution to Notch-induced tumorigenesis would facilitate the deployment of Notch inhibition strategies for effective treatment of breast cancer

    Sprouty Proteins Inhibit Receptor-mediated Activation of Phosphatidylinositol-specific Phospholipase C

    Get PDF
    PLCγ03B3 binds Spry1 and Spry2. Overexpression of Spry decreased PLCγ03B3 activity and IP3 and DAG production, whereas Spry-deficient cells yielded more IP3. Spry overexpression inhibited T-cell receptor signaling and Spry1 null T-cells hyperproliferated with TCR ligation. Through action of PLCγ03B3, Spry may influence signaling through multiple receptors

    RelB-Dependent Stromal Cells Promote T-Cell Leukemogenesis

    Get PDF
    BACKGROUND: The Rel/NF-kappaB transcription factors are often activated in solid or hematological malignancies. In most cases, NF-kappaB activation is found in malignant cells and results from activation of the canonical NF-kappaB pathway, leading to RelA and/or c-Rel activation. Recently, NF-kappaB activity in inflammatory cells infiltrating solid tumors has been shown to contribute to solid tumor initiation and progression. Noncanonical NF-kappaB activation, which leads to RelB activation, has also been reported in breast carcinoma, prostate cancer, and lymphoid leukemia. METHODOLOGY/PRINCIPAL FINDINGS: Here we report a novel role for RelB in stromal cells that promote T-cell leukemogenesis. RelB deficiency delayed leukemia onset in the TEL-JAK2 transgenic mouse model of human T acute lymphoblastic leukemia. Bone marrow chimeric mouse experiments showed that RelB is not required in the hematopoietic compartment. In contrast, RelB plays a role in radio-resistant stromal cells to accelerate leukemia onset and increase disease severity. CONCLUSIONS/SIGNIFICANCE: The present results are the first to uncover a role for RelB in the crosstalk between non-hematopoietic stromal cells and leukemic cells. Thus, besides its previously reported role intrinsic to specific cancer cells, the noncanonical NF-kappaB pathway may also play a pro-oncogenic role in cancer microenvironmental cells

    Pediatric T- and NK-cell lymphomas: new biologic insights and treatment strategies

    Get PDF
    T- and natural killer (NK)-cell lymphomas are challenging childhood neoplasms. These cancers have varying presentations, vast molecular heterogeneity, and several are quite unusual in the West, creating diagnostic challenges. Over 20 distinct T- and NK-cell neoplasms are recognized by the 2008 World Health Organization classification, demonstrating the diversity and potential complexity of these cases. In pediatric populations, selection of optimal therapy poses an additional quandary, as most of these malignancies have not been studied in large randomized clinical trials. Despite their rarity, exciting molecular discoveries are yielding insights into these clinicopathologic entities, improving the accuracy of our diagnoses of these cancers, and expanding our ability to effectively treat them, including the use of new targeted therapies. Here, we summarize this fascinating group of lymphomas, with particular attention to the three most common subtypes: T-lymphoblastic lymphoma, anaplastic large cell lymphoma, and peripheral T-cell lymphoma-not otherwise specified. We highlight recent findings regarding their molecular etiologies, new biologic markers, and cutting-edge therapeutic strategies applied to this intriguing class of neoplasms

    The clerodane diterpene casearin J induces apoptosis of T-ALL cells through SERCA inhibition, oxidative stress, and interference with Notch1 signaling

    Get PDF
    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy that preferentially affects children and adolescents. Over 50% of human T-ALLs possess activating mutations of Notch1. The clerodane diterpene casearin J (CJ) is a natural product that inhibits the sarcoendoplasmatic reticulum calcium ATPase (SERCA) pump and induces cell death in leukemia cells, but the molecular mechanism of cytotoxicity remains poorly understood. Here we show that owing to SERCA pump inhibition, CJ induces depletion of the endoplasmic reticulum calcium pools, oxidative stress, and apoptosis via the intrinsic signaling pathway. Moreover, Notch1 signaling is reduced in T-ALL cells with auto-activating mutations in the HD-domain of Notch1, but not in cells that do not depend on Notch1 signaling. CJ also provoked a slight activation of NF-κB, and consistent with this notion a combined treatment of CJ and the NF-κB inhibitor parthenolide (Pt) led to a remarkable synergistic cell death in T-ALL cells. Altogether, our data support the concept that inhibition of the SERCA pump may be a novel strategy for the treatment of T-ALL with HD-domain-mutant Notch1 receptors and that additional treatment with the NF-κB inhibitor parthenolide may have further therapeutic benefits.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones en Productos Naturales (CIPRONA)UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Químic
    corecore