53 research outputs found

    A note on multiple flow equilibria

    Full text link
    A set of ordinary differential equations describing a mechanical system subject to forcing and dissipation is considered. A topological argument is employed to show that if all time-dependent solutions of the governing equations are bounded, the equations admit N steady solutions, where N is a positive odd integer and where at least ( N −1)/2 of the steady solutions are unstable. The results are discussed in the context of atmospheric flows, and it is shown that truncated forms of the quasigeostrophic equations of dynamic meteorology and of Budyko-Sellers climate models satisfy the hypotheses of the theorem.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43139/1/24_2004_Article_BF00881609.pd

    Receptor Activation and Inositol Lipid Hydrolysis in Neural Tissues

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66228/1/j.1471-4159.1987.tb05618.x.pd

    Autoradiographic quantification of muscarinic cholinergic synaptic markers in bat, shrew, and rat brain

    Full text link
    We employed radioligand binding autoradiography to determine the distributions of pre- and postsynaptic cholinergic radioligand binding sites in the brains of two species of bat, one species of shrew, and the rat. High affinity choline uptake sites were measured with [ 3 H]hemicholinium, and presynaptic cholinergic vesicles were identified with [ 3 H]vesamicol. Muscarinic cholinergic receptors were determined with [ 3 H]scopolamine. The distribution patterns of the three cholinergic markers were similar in all species examined, and identified known major cholinergic pathways on the basis of enrichments in both pre- and postsynaptic markers. In addition, there was excellent agreement, both within and across species, in the regional distributions of the two presynaptic cholinergic markers. Our results indicate that pharmacological identifiers of cholinergic pathways and synapses, including the cholinergic vesicle transport site, and the organizations of central nervous system cholinergic pathways are phylogenetically conserved among eutherian mammals.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45409/1/11064_2004_Article_BF00971334.pd
    • …
    corecore