43 research outputs found

    Are Bone and Muscle Changes from POWER PE, an 8-month In-school Jumping Intervention, Maintained at Three Years?

    Get PDF
    Our aim was to determine if the musculoskeletal benefits of a twice-weekly, school-based, jumping regime in healthy adolescent boys and girls were maintained three years later. Subjects of the original POWER PE trial (n = 99) were contacted and asked to undergo retesting three years after cessation of the intervention. All original measures were completed including: sitting height, standing height, weight, calcaneal broadband ultrasound attenuation (BUA), whole body, hip and spine bone mineral content (BMC), lean tissue mass, and fat mass. Physical activity was recorded with the bone-specific physical activity questionnaire (BPAQ) and calcium intake was estimated with a calcium-focussed food questionnaire. Maturity was determined by Tanner staging and estimation of the age of peak height velocity (PHV). Twenty-nine adolescents aged 17.3±0.4 years agreed to participate. Three years after the intervention, there were no differences in subject characteristics between control and intervention groups (p>0.05). Three-year change in weight, lean mass, and fat mass were similar between groups (p>0.05). There were no significant group differences in three-year change in BUA or BMC at any site (p>0.05), although the between-group difference in femoral neck BMC at follow-up exceeded the least significant change. While significant group differences were not observed three years after cessation of the intervention, changes in bone parameters occurred in parallel for intervention and control groups such that the original benefits of the intervention observed within the treatment group were sustained

    The influence of muscular action on bone strength via exercise

    Get PDF
    Mechanical stimuli influence bone strength, with internal muscular forces thought to be the greatest stressors of bone. Consequently, the effects of exercise in improving and maintaining bone strength have been explored in a number of interventional studies. These studies demonstrate a positive effect of high-impact activities (i.e. where large muscle forces are produced) on bone strength, with benefits being most pronounced in interventions in early pubertal children. However, current studies have not investigated the forces acting on bones and subsequent deformation, preventing the development of optimised and targeted exercise interventions. Similarly, the effects of number and frequency of exercise repetitions and training sessions on bone accrual are unexplored. There are conflicting results as to gender effects on bone response to exercise, and the effects of age and starting age on the osteogenic effects of exercise are not well known. It also appears that exercise interventions are most effective in physically inactive people or counteracting conditions of disuse such as bed rest. Bone strength is only one component of fracture risk, and it may be that exercise resulting in improvements in, e.g., muscle force/power and/or balance is more effective than those whose effects are solely osteogenic. In summary, exercise is likely to be an effective tool in maintaining bone strength but current interventions are far from optimal. © Springer Science+Business Media 2013

    Listeria pathogenesis and molecular virulence determinants

    Get PDF
    The gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Pregnant women, neonates, the elderly, and debilitated or immunocompromised patients in general are predominantly affected, although the disease can also develop in normal individuals. Clinical manifestations of invasive listeriosis are usually severe and include abortion, sepsis, and meningoencephalitis. Listeriosis can also manifest as a febrile gastroenteritis syndrome. In addition to humans, L. monocytogenes affects many vertebrate species, including birds. Listeria ivanovii, a second pathogenic species of the genus, is specific for ruminants. Our current view of the pathophysiology of listeriosis derives largely from studies with the mouse infection model. Pathogenic listeriae enter the host primarily through the intestine. The liver is thought to be their first target organ after intestinal translocation. In the liver, listeriae actively multiply until the infection is controlled by a cell-mediated immune response. This initial, subclinical step of listeriosis is thought to be common due to the frequent presence of pathogenic L. monocytogenes in food. In normal indivuals, the continual exposure to listerial antigens probably contributes to the maintenance of anti-Listeria memory T cells. However, in debilitated and immunocompromised patients, the unrestricted proliferation of listeriae in the liver may result in prolonged low-level bacteremia, leading to invasion of the preferred secondary target organs (the brain and the gravid uterus) and to overt clinical disease. L. monocytogenes and L. ivanovii are facultative intracellular parasites able to survive in macrophages and to invade a variety of normally nonphagocytic cells, such as epithelial cells, hepatocytes, and endothelial cells. In all these cell types, pathogenic listeriae go through an intracellular life cycle involving early escape from the phagocytic vacuole, rapid intracytoplasmic multiplication, bacterially induced actin-based motility, and direct spread to neighboring cells, in which they reinitiate the cycle. In this way, listeriae disseminate in host tissues sheltered from the humoral arm of the immune system. Over the last 15 years, a number of virulence factors involved in key steps of this intracellular life cycle have been identified. This review describes in detail the molecular determinants of Listeria virulence and their mechanism of action and summarizes the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listeria infection. This article provides an updated perspective of the development of our understanding of Listeria pathogenesis from the first molecular genetic analyses of virulence mechanisms reported in 1985 until the start of the genomic era of Listeria research
    corecore