80 research outputs found

    Raman scattering of atoms from a quasi-condensate in a perturbative regime

    Full text link
    It is demonstrated that measurements of positions of atoms scattered from a quasi-condensate in a Raman process provide information on the temperature of the parent cloud. In particular, the widths of the density and second order correlation functions are sensitive to the phase fluctuations induced by non-zero temperature of the quasi-condensate. It is also shown how these widths evolve during expansion of the cloud of scattered atoms. These results are useful for planning future Raman scattering experiments and indicate the degree of spatial resolution of atom-position measurements necessary to detect the temperature dependence of the quasi-condensate.Comment: 8 pages, 8 figure

    Bogoliubov theory for atom scattering into separate regions

    Get PDF
    We review the Bogoliubov theory in the context of recent experiments, where atoms are scattered from a Bose-Einstein Condensate into two well-separated regions. We find the full dynamics of the pair-production process, calculate the first and second order correlation functions and show that the system is ideally number-squeezed. We calculate the Fisher information to show how the entanglement between the atoms from the two regions changes in time. We also provide a simple expression for the lower bound of the useful entanglement in the system in terms of the average number of scattered atoms and the number of modes they occupy. We then apply our theory to a recent "twin-beam" experiment [R. B\"ucker {\it et al.}, Nat. Phys. {\bf 7}, 608 (2011)]. The only numerical step of our semi-analytical description can be easily solved and does not require implementation of any stochastic methods.Comment: 11 pages, 6 figure

    Tradeoffs for number-squeezing in collisions of Bose-Einstein condensates

    Full text link
    We investigate the factors that influence the usefulness of supersonic collisions of Bose-Einstein condensates as a potential source of entangled atomic pairs by analyzing the reduction of the number difference fluctuations between regions of opposite momenta. We show that non-monochromaticity of the mother clouds is typically the leading limitation on number squeezing, and that the squeezing becomes less robust to this effect as the density of pairs grows. We develop a simple model that explains the relationship between density correlations and the number squeezing, allows one to estimate the squeezing from properties of the correlation peaks, and shows how the multi-mode nature of the scattering must be taken into account to understand the behavior of the pairing. We analyze the impact of the Bose enhancement on the number squeezing, by introducing a simplified low-gain model. We conclude that as far as squeezing is concerned the preferable configuration occurs when atoms are scattered not uniformly but rather into two well separated regions.Comment: 13 pages, 13 figures, final versio

    Elastic scattering loss of atoms from colliding Bose-Einstein condensate wavepackets

    Full text link
    Bragg diffraction of atoms by light waves has been used to create high momentum components in a Bose-Einstein condensate. Collisions between atoms from two distinct momentum wavepackets cause elastic scattering that can remove a significant fraction of atoms from the wavepackets and cause the formation of a spherical shell of scattered atoms. We develop a slowly varying envelope technique that includes the effects of this loss on the condensate dynamics described by the Gross-Pitaevski equation. Three-dimensional numerical calculations are presented for two experimental situations: passage of a moving daughter condensate through a non-moving parent condensate, and four-wave mixing of matter waves.Comment: Phys. Rev. Lett, in pres

    Improved Semiclassical Approximation for Bose-Einstein Condensates: Application to a BEC in an Optical Potential

    Full text link
    We present semiclassical descriptions of Bose-Einstein condensates for configurations with spatial symmetry, e.g., cylindrical symmetry, and without any symmetry. The description of the cylindrical case is quasi-one-dimensional (Q1D), in the sense that one only needs to solve an effective 1D nonlinear Schrodinger equation, but the solution incorporates correct 3D aspects of the problem. The solution in classically allowed regions is matched onto that in classically forbidden regions by a connection formula that properly accounts for the nonlinear mean-field interaction. Special cases for vortex solutions are treated too. Comparisons of the Q1D solution with full 3D and Thomas-Fermi ones are presented.Comment: 14 pages, 5 figure

    Fully three dimensional breather solitons can be created using Feshbach resonance

    Full text link
    We investigate the stability properties of breather solitons in a three-dimensional Bose-Einstein Condensate with Feshbach Resonance Management of the scattering length and con ned only by a one dimensional optical lattice. We compare regions of stability in parameter space obtained from a fully 3D analysis with those from a quasi two-dimensional treatment. For moderate con nement we discover a new island of stability in the 3D case, not present in the quasi 2D treatment. Stable solutions from this region have nontrivial dynamics in the lattice direction, hence they describe fully 3D breather solitons. We demonstrate these solutions in direct numerical simulations and outline a possible way of creating robust 3D solitons in experiments in a Bose Einstein Condensate in a one-dimensional lattice. We point other possible applications.Comment: 4 pages, 4 figures; accepted to Physical Review Letter

    Few-cycle soliton propagation

    Full text link
    Soliton propagation is usually described in the ``slowly varying envelope approximation'' (SVEA) regime, which is not applicable for ultrashort pulses. We present theoretical results and numerical simulations for both NLS and parametric (χ(2)\chi^{(2)}) ultrashort solitons in the ``generalised few-cycle envelope approximation'' (GFEA) regime, demonstrating their altered propagation.Comment: 4 pages, 4 figure

    Stability of Waves in Multi-component DNLS system

    Get PDF
    In this work, we systematically generalize the Evans function methodology to address vector systems of discrete equations. We physically motivate and mathematically use as our case example a vector form of the discrete nonlinear Schrodinger equation with both nonlinear and linear couplings between the components. The Evans function allows us to qualitatively predict the stability of the nonlinear waves under the relevant perturbations and to quantitatively examine the dependence of the corresponding point spectrum eigenvalues on the system parameters. These analytical predictions are subsequently corroborated by numerical computations.Comment: to appear Journal of Physics A: Mathematical and Theoretica
    • …
    corecore