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Abstract
We review the Bogoliubov theory in the context of recent experiments, where
atoms are scattered from a Bose–Einstein condensate into two well-separated
regions. We find the full dynamics of the pair-production process, calculate
the first and second order correlation functions and show that the system is
ideally number-squeezed. We calculate the Fisher information to show how the
entanglement between atoms from the two regions changes in time. We also
provide a simple expression for the lower bound of the useful entanglement in
the system in terms of the average number of scattered atoms and the number of
modes they occupy. We then apply our theory to a recent ‘twin-beam’ experiment
(Bücker et al 2011 Nature Phys. 7 608). The only numerical step of our semi-
analytical description can be easily solved and does not require implementation
of any stochastic methods.

1. Introduction

In recent years, systems where strong correlations between particles are induced by pair-wise
scattering, have attracted much attention. In the canonical example, which is the parametric
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down-conversion, photon pairs are generated during the propagation of a laser beam through
a nonlinear medium. The outcoming pairs of photons are entangled, and can serve as a probe
of fundamental properties of quantum mechanics [1, 2], such as the Einstein–Podolsky–Rosen
paradox, or violation of the Bell inequalities [1–3]. On the other hand, entanglement can be
exploited in practical applications, such as teleportation [4, 5] or metrology beyond the shot-
noise limit (SNL) [6, 7].

In this latter context, recent experiments with entangled states of atoms were a major
breakthrough [8]. In [8–10], two-body interactions were utilized to prepare non-classical
squeezed states of atoms trapped in a double-well potential, which implies presence of
many-body entanglement [11]. A similar idea was exploited to generate squeezing in the
internal [12–14] degrees of freedom. In [15, 16], squeezing of a large spin of a collection of
two-level atoms was achieved, using an intense laser field interacting with particles trapped in
an optical cavity.

Simultaneously, a substantial experimental effort was put in order to generate entangled
pairs of atoms scattered out of a Bose–Einstein condensate (BEC). In [17–20], a collision of
two BECs lead to weak scattering of correlated atomic pairs onto a three-dimensional sphere
of initially unoccupied modes. Moderate number-squeezing between the opposite regions of
the halo, and the related violation of the Cauchy–Schwarz inequality were experimentally
demonstrated [19, 20], which, according to recent findings, proves entanglement between
identical bosons [21]. Alternatively, pair-production schemes were developed, where only few
modes are strongly populated in a stimulated process, making the system somewhat easier to
handle. Stimulated four-wave-mixing processes have been implemented using different spin
states of atoms [22–24] or Bragg scattering [25, 26]. Also, dynamic instabilities in moving
optical lattices, populating modes with opposite quasi-momenta, have been used [27, 28].
In [29], a BEC was transferred into the first excited state of a trapping potential and subsequent
two-body collisions created a ‘twin-beam’ system, where stronger-than-classical correlations
could directly be observed.

Analogous schemes have been implemented in internal atomic states, building upon spin-
changing collisions [30–32]. Furthermore, in [30] it was shown that particles scattered in this
process into a pair of m F = ±1 Zeeman sub-levels are usefully entangled from the metrological
point of view.

In this work we develop a theoretical model for the generic type of experiments, where
particles scatter in pairs into two well-separated regions. If these regions are separated in the
momentum space, they could also be set apart by a sufficiently long expansion of the cloud.
On the other hand, in cases when the regions are defined as two Zeeman sub-levels, they can
be separated in space using a Stern–Gerlach scheme. Our model applies to any such possible
configuration. Therefore, the general conclusions of this study, concerning the correlations,
number-squeezing and entanglement, are valid for recent experiments [22–24, 28–30] in the
regime, where the depletion of the source BEC is low. We derive the Bogoliubov equations
governing the dynamics of pair formation, and applying the Bloch–Messiah reduction [33–35],
we write the state in terms of pairs of independently squeezed modes. We calculate the
density and the number of scattered atoms, and the two body correlation between them. We
demonstrate the presence of ideal number-squeezing between the opposite regions. Also, using
the Cauchy–Schwarz inequality criterion and the Fisher information known from quantum
metrology [7, 40], we show that atoms from the twin-beam system are entangled. We also
provide a simple yet useful lower bound for the Fisher information in terms of the average
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number of scattered atoms, and the number of modes they occupy. Finally, we apply the above
formalism to the twin-beam experiment of [29].

This paper is organized as follows. In section 2.1 we discuss the general properties of
the solutions of the Bogoliubov equations. These observations allow to easily calculate the
density and the second order coherence of the system in section 2.2 and the fluctuations of the
population imbalance between the opposite regions in section 2.3. In section 2.4 we take the first
step toward the demonstration of particle entanglement present in the system, by showing that
the second order correlation function violates the Cauchy–Schwarz inequality. In section 2.5
we demonstrate that the scattered atoms are usefully entangled from the metrological point
of view. In section 3.1 we briefly describe the experimental setup of [29] and in 3.2 derive
the corresponding effective Bogoliubov equations. Finally, in section 3.3 we review the most
relevant properties of the twin-beam system by showing the results of the numerical simulation.
We conclude in section 4.

2. General properties of the scattered particles

We first present the general properties of the solution of the Bogoliubov equation, in cases where
particles scatter pair-wise into well-separated regions.

2.1. Bogoliubov equation for pair scattering

Our theoretical description of the pair-production process starts with a many-body Hamiltonian
with contact two-body interactions

Ĥ =

∫
dr 9̂†(r)

(
−

h̄2
∇

2

2m
+ V (r)

)
9̂(r)+

g

2

∫
dr 9̂†(r)9̂†(r)9̂(r)9̂(r). (1)

Here V (r) is an external trapping potential and g =
4π h̄2a

m is the strength of the two-body

interactions, a is the scattering length, m is the atomic mass and the field operator 9̂(r) satisfies
the bosonic commutation relations. To derive the Bogoliubov equation, we first find the c-
number (mean field) wave function of the BEC using the Gross–Pitaevskii equation (GPE)

i h̄∂tψ(r)=

(
−

h̄2
∇

2

2m
+ V (r)+ g|ψ(r)|2

)
ψ(r). (2)

We then write the field operator as a sum of the c-number part and the Bogoliubov correction,
9̂(r)= ψ(r)+ δ̂(r) and insert this expression into (1). By keeping only the terms up to quadratic
in δ̂ we obtain the Bogoliubov Hamiltonian

Ĥ bog =

∫
dr δ̂†(r)

(
−

h̄2
∇

2

2m
+ V (r)+ 2g|ψ(r)|2

)
δ̂(r)+ g

∫
dr
(
δ̂†(r)δ̂†(r) ψ2(r)+ h.c.

)
. (3)

The resulting Bogoliubov equation of motion is linear

i h̄∂t δ̂(r, t)=

(
−

h̄2
∇

2

2m
+ V (r)+ 2 g|ψ(r)|2

)
δ̂(r, t)+ gψ2(r)δ̂†(r, t). (4)
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Usually, a numerical solution of this equation is found in a following way. The field operator is
expanded in a basis of wave-functions ϕ̃i(r)which match the geometry of the scattering problem

δ̂(r, t)=

∑
i

ϕ̃i(r)âi(t). (5)

This expression is inserted into equation (4), the resulting equation is multiplied by ϕ̃∗

j (r) and
the outcome is integrated by sides over the whole space. In effect, what we obtain is an equation
of motion, which, through the matrices Â and B̂, couples the evolution of the j th operator â j(t),
with (in general) all others operators

i ∂t â j(t)=

∑
k

A jk âk(t)+
∑

k

B jk â†
k (t). (6)

This equation is linear—a consequence of the linearity of the Bogoliubov equation (4)—so the
general solution of (6) reads

âi(t)=

∑
j

Ci j(t)â j(0)+
∑

j

Si j(t)â
†
j (0), (7)

where the matrices Ĉ and Ŝ satisfy ĈĈ†
− ŜŜ†

= 1̂ and ĈŜT
− ŜĈT

= 0. Later, we will apply
this method to solve the Bogoliubov dynamics of the twin-beam production. However, we will
show in the following, that in cases where the detailed form of the Hamiltonian (3) drives the
scattering of atomic pairs into opposite regions (as indeed happens in twin-beam experiments),
the basic properties of the system can be deduced analytically if an appropriate set of mode
functions ϕi(r) is chosen.

Let us denote the two separate regions into which the particles are scattered by L (left) and
R (right). Particles populate L and R in a process of elastic scattering, so the regions are usually
separated in momentum space. From this point of view, it is convenient to switch to the space
of wave-vectors k and decompose the field operator as follows:

δ̂(k, t)=

∑
i

ϕ
(i)
R (k, t) â(i)R (t)+

∑
i

ϕ
(i)
L (k, t) â(i)L (t). (8)

The operators â(i)R/L(t) annihilate a particle in a mode characterized by the time-dependent

wave function ϕ(i)R/L(k, t), which is localized in the right/left region in momentum space. We
underline, that this kind of separation is also present in position space after expansion of the
cloud, or after application of a Stern–Gerlach pulse in internal-state experiments, respectively.
Moreover, the vector k might denote the quasi-momentum, if the scattering takes place in an
optical lattice.

Formally, the only difference between the formulation (5) and (8) is the splitting of the
field operator into the R and L modes. However, for a linear equation of motion such as (4),
there exists a unique basis of mode functions for which the evolution equations of the mode
pairs decouple from each other:

â(i)R (t)= ci(t) â(i)R (0)+ si(t) â(i)†L (0), (9)

â(i)L (t)= ci(t) â(i)L (0)+ si(t) â(i)†R (0), (10)

where |ci(t)|2 − |si(t)|2 = 1. This form of the Bogoliubov equation has a simple physical
interpretation: atoms scatter pair-wise into opposite regions, and the total field operator (8) is a
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sum of independent mode pairs, which are squeezed in their relative population fluctuations, as
will be explained in detail below.

Although the diagonal form (9) and (10) is much clearer than (7), it is not obvious at
the moment how this particular basis (8) can be found. This is done in two steps, applying the
procedure of the Bloch–Messiah reduction [33–35]. First, using equations (8)–(10), we evaluate
the one-body density matrix (first-order correlation function) and obtain

G(1)(k1,k2; t)≡ 〈δ̂†(k1, t)δ̂(k2, t)〉 (11)

=

∑
i

ni

(
ϕ
(i)∗
R (k1, t)ϕ(i)R (k2, t)+ϕ(i)∗L (k1, t)ϕ(i)L (k2, t)

)
,

where ni = |si(t)|2. Note that ni is the average occupation of the i th eigen-mode, and that a pair
of modes ϕ(i)R (k, t) and ϕ(i)L (k, t) is degenerate (has the same eigen-value ni ) due to the assumed
symmetry between the left and the right region. Since we are using the Heisenberg picture, the
average value in equation (11) and all equations that follow are calculated in the initial vacuum
state of scattered atoms.

In any practical approach, if the basis (8) is not known a priori, this step first requires
a numerical evaluation of the density matrix (11) in any convenient basis (5), and subsequent
diagonalization. Once this is done, then according to equation (11), the basis functions ϕ(i)R/L(k, t)
are the momentary eigen-functions of the one-body density matrix (natural orbitals). However,
a second step is necessary to fully determine the functions ϕ(i)R/L(k, t), because the density
matrix—contrary to the field operator (8)—is insensitive to global phases of the mode functions.
To retrieve this additional information, we calculate the anomalous density

M(k1,k2; t)≡ 〈δ̂(k1, t)δ̂(k2, t)〉 =

∑
i

√
ni(ni + 1)

(
ϕ
(i)
R (k1, t)ϕ(i)L (k2, t)+ϕ(i)R (k2, t)ϕ(i)L (k1, t)

)
(12)

multiply it by sides with the eigen-functions of the density matrix and integrate over space.
As a result, we retrieve the information about the phases and obtain the full form of the mode
functions ϕ(i)R/L(k, t) of the diagonal basis.

To summarize, we have outlined the structure of the solution of the Bogoliubov equation
for cases where atoms are scattered into two opposite regions. We will now show that the extra
step, which is the transition from the ‘numerical approach’ (5) to the diagonal basis (8), allows
to easily determine the basic properties of the system of scattered atoms, like its density or
higher correlation functions.

2.2. Density and correlations

The simplest observable characterizing the pair-production process is the density

ρ(k; t)≡ G(1)(k,k; t)=

∑
i

ni

(
|ϕ
(i)
R (k, t)|2 + |ϕ

(i)
L (k, t)|2

)
(13)

which is, consistently with our derivation, localized in the two opposite regions. By integrating
the above function over space, we obtain the information about the expected number of scattered
atoms as a function of time

〈N̂ 〉 =

∫
dk ρ(k; t)= 2

∑
i

ni . (14)
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Additional information about the system is carried by the correlations between the scattered
particles. The probability of simultaneous detection of two atoms at momenta k1 and k2 can be
obtained from the normalized second-order correlation function

g(2)(k1,k2; t)=
〈δ̂†(k1, t)δ̂†(k2, t)δ̂(k2, t)δ̂(k1, t)〉

ρ(k1; t)ρ(k2; t)
. (15)

According to the Wick’s theorem, this function can be written in terms of the one-body density
matrix (11) and the anomalous density (12) as follows:

g(2)(k1,k2; t)= 1 +
|G(1)(k1,k2; t)|2 + |M(k1,k2; t)|2

ρ(k1; t)ρ(k2; t)
. (16)

The transition from equations (15) to (16) might seem an unnecessary complication, however we
will argue that it allows for a simple and intuitive interpretation of the second-order correlation
function. According to equation (11), the density matrix is non-vanishing only when k1 and k2

are both either in the right or left region, so |G(1)
|
2 governs the Hanbury–Brown and Twiss

(HBT) type of local correlations. On the other hand, as can be seen from equation (12),
the anomalous density is non-zero only when k1 and k2 are in the opposite regions, so it
describes the cross-correlations between the two members of the scattered pair. Clearly, this
simple interpretation of the second order correlation function as a sum of local- and opposite-
momentum correlations would have been much more difficult if we had not applied the
diagonalization procedure and the Wick’s theorem.

2.3. Number squeezing

Another property characterizing the scattering process are the fluctuations of the population
imbalance between the two regions. If these fluctuations are suppressed below the properly
defined shot-noise level, the system is number squeezed, which proves that atoms scatter in
pairs rather then independently to the left and to the right region. A quantitative description of
the number squeezing involves the left and right atom number operators defined as the integrals
of the density operators over the corresponding volumes, i.e.

N̂R/L =

∫
R/L

dk δ̂†(k, t)δ̂(k, t). (17)

The population imbalance operator is then simply defined as n̂ = N̂R − N̂L and using
equation (8) we obtain

n̂ =

∑
i

(
â(i)†R (0) â(i)R (0)− â(i)†L (0) â(i)L (0)

)
. (18)

The number squeezing factor is defined as

ξ 2
=
12n̂

〈N̂ 〉
, (19)

where12n̂ = 〈n̂2
〉 − 〈n̂〉

2 is the variance of the population imbalance operator. If the fluctuations
between the two regions are suppressed below the shot-noise level defined as ξ 2

= 1, the system
is called ‘number-squeezed’. In our case, since n̂ does not depend on time and the initial state
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is a vacuum, we obtain that ξ 2
≡ 0. Therefore, the two-region Bogoliubov system is perfectly

number-squeezed, as anticipated in the previous section.
The ideal number-squeezing is a result of clear separation of the two scattering regions.

In such case, it is natural to define the local atom-number operators (17) and the population
imbalance operator (18). It is important to note that not all systems, where particles are
scattered in pairs are perfectly number squeezed. For instance, when two BECs collide, they
produce a halo of atoms due to two-body elastic scattering into the initially unoccupied modes
[17, 25]. In this system however, there is no simple way to define two separate regions. One
can instead measure the number of atoms in two bins lying on the opposite sides of the
halo. Moderate number-squeezing of the atom number difference between these bins has been
observed experimentally [19], but it is impossible to reach the limit ξ 2

= 0 [36]. In contrast, the
twin matter wave configurations [22, 24, 28–30], are ideal sources of correlated atomic pairs
occupying two well-defined areas.

2.4. Violation of the Cauchy–Schwarz inequality

Apart from the number squeezing, the twin-region system can be characterized by another
expression, which is called the Cauchy–Schwarz inequality. It relates the strength of the local
and opposite correlations to witness the pair-scattering process. Following [20], we define
averaged second-order correlations as

G(2)µν ≡

∫
µ

dk1

∫
ν

dk2〈δ̂
†(k1, t)δ̂†(k2, t)δ̂(k2, t)δ̂(k1, t)〉, (20)

where µ, ν ∈ {R,L}. In the symmetric case, the Cauchy–Schwarz inequality G(2)RL 6 (G
(2)
RRG

(2)
LL )

1/2

can now be re-written as∫
R
dk1

∫
L
dk2|M(k1,k2; t)|2 6

∫
R
dk1

∫
R
dk2|G

(1)(k1,k2; t)|2. (21)

Using expressions (11) and (12) we obtain

G(2)RL =

(∑
i

ni

)2

+
∑

i

ni(ni + 1), (22)

G(2)RR =

(∑
i

ni

)2

+
∑

i

n2
i , (23)

thus the Cauchy–Schwarz inequality reads∑
i

ni(ni + 1)6
∑

i

n2
i (24)

which is true only for all ni = 0. As soon as particles start to scatter into the two regions, the
Cauchy–Schwarz inequality is clearly violated. To quantify the degree of violation, a coefficient
C was introduced in [20], which reads

C =
G(2)RL

G(2)RR

. (25)
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When C 6 1 the system is in the ‘classical’ regime, while C > 1 signify correlations which are
stronger than allowed by the classical physics. In our case this coefficient reads

C = 1 +

∑
i ni(∑

i ni

)2
+
∑

i n2
i

. (26)

Clearly, always C > 1, because it is a sum of unity and a non-negative part. For high mode
populations ni , the second term, which is inversely proportional to the number of scattered
particles tends to zero, restoring the classical limit. Nevertheless, as demonstrated with photons
in [37], the confidence by which the Cauchy–Schwarz inequality can be violated in the presence
of classical noise still increases with more strongly populated modes.

It has been recently demonstrated that the violation of the Cauchy–Schwarz inequality
is a proof of particle entanglement in all systems of identical bosons [21]. The relation holds
for every case, when either the number of particles is fixed or fluctuates from shot to shot,
as happens in systems described by the Bogoliubov theory, for as long as coherences between
different number states are absent. However in the high-gain regime, it is the Fisher information,
which is the quantity more sensitive to particle entanglement then the Cauchy–Schwarz
criterion, as we show in the following section. The Fisher information quantifies the potential
for sub-shot-noise interferometry, and increases with rising mode population, in spite of the
decreasing ‘granularity’ of the matter wave [35] that leads to all second-order correlation
functions approaching equal values.

2.5. Entanglement and interferometry

We now show that atoms occupying the two regions are entangled, and could be used as an
input of a quantum interferometer operating below the shot-noise level. We first recall how
the precision of the phase estimation is related to the entanglement of input states using as an
example the standard two-mode Mach–Zehnder interferometer (MZI). Then, we extend these
concepts to the case, where the interferometer operates between two regions, each having a
multi-mode structure determined by the Bogoliubov equations.

When speaking about two-mode interferometers, it is convenient to introduce a set of three
operators

Ĵ x =
1
2

(
â†

RâL + â†
LâR

)
, (27)

Ĵ y =
1

2i

(
â†

RâL − â†
LâR

)
, (28)

Ĵ z =
1
2

(
â†

RâR − â†
LâL

)
(29)

which obey the same commutation relations as the angular momentum operators. The MZI,
which is an interferometric device, where the imprint of the phase θ onto the input state
is preceded and followed by a pair of symmetric beam-splitters, can be represented by a
unitary evolution operator Û (θ)= e−iθ Ĵ y . If the phase is estimated in a series of ν � 1
measurements performed on the output state, the precision of the phase estimation is limited
by the Cramer–Rao lower bound (CRLB) [38, 39]

1θ >
1

√
ν

1
√

FQ

. (30)

8
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Here, FQ is the quantum Fisher information (QFI), which is related to the unitary transformation
Û (θ). For pure states transformed by the MZI it is equal to FQ = 412Ĵ y , where the variance is
calculated in the input state of the interferometer [40]. The CRLB states, that if θ is determined
using any possible type of measurement and estimator, then the precision 1θ is bounded as in
equation (30).

Apart from providing a lower bound for the error of the phase estimation, the FQ is an
entanglement measure. Namely, when the input state has an average number of 〈N̂ 〉 particles,
then if FQ > 〈N̂ 〉, the state is particle-entangled [41].

We now show, that a natural extension of the two-mode picture allows to employ the
concept of the QFI as an entanglement measure also in our multi-mode system of interest.
To this end, we introduce the following analogue of the two-mode angular momentum
operators (27)–(29):

Ĵ x =
1

2

∫
R
dk

(
δ̂†(k)δ̂(−k)+ δ̂†(−k)δ̂(k)

)
, (31)

Ĵ y =
1

2 i

∫
R
dk

(
δ̂†(k)δ̂(−k)− δ̂†(−k)δ̂(k)

)
, (32)

Ĵ z =
1

2

∫
R
dk

(
δ̂†(k)δ̂(k)− δ̂†(−k)δ̂(−k)

)
, (33)

where we dropped the explicit time-dependence of the δ̂(k, t) to simplify the notation. Also, for
simplicity, we choose the well-separated regions R and L to be localized symmetrically on the
opposite sites of k = 0. The construction of these operators, which satisfy the same commutation
relations as (27)–(29), is based on the analogy between the two-mode systems and the twin-
beam configuration. In the former case, the operators connect the right and left modes, while
in the latter the left and right sub-spaces. Such a definition (31)–(33) is meaningful only in
situations, where the system consists of two well-separated sub-systems.

Using the decomposition of the field operator into the set of independent modes,
equations (8)–(10), the above integrals yield, that each angular momentum operator is a sum
of operators acting on each mode independently, that is

Ĵ x =

∑
i

1

2

(
â(i)†R â(i)L + â(i)†L â(i)R

)
≡

∑
i

Ĵ (i)x , (34)

Ĵ y =

∑
i

1

2i

(
â(i)†R â(i)L − â(i)†L â(i)R

)
≡

∑
i

Ĵ (i)y , (35)

Ĵ z =

∑
i

1

2

(
â(i)†R â(i)R − â(i)†L â(i)L

)
≡

∑
i

Ĵ (i)z . (36)

These expressions show again that it is natural to describe the two-region system using the
diagonal basis (8). In this language, the angular momentum operators are simply a sum of
operators acting on each pair of modes independently, which vastly simplifies the further
analysis.

To establish a direct relation between the two-mode and two-region case, we now assume
that the system is transformed in the multi-mode analogue of the MZI. As outlined above, to
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demonstrate the presence of useful entanglement between atoms in the left and in the right, it is
necessary to calculate the QFI. Using equation (34) we obtain that

FQ = 412Ĵ y = 4

〈(∑
i

Ĵ (i)y

)2〉
= 4

∑
i

〈(
Ĵ (i)y

)2
〉

+ 4
∑
i 6= j

〈
Ĵ (i)y Ĵ ( j)

y

〉
. (37)

Since the construction of the basis (8) explicitly assumes that each mode is independent from
all others, the second term in the last equality is 4

∑
i 6= j〈 Ĵ (i)y 〉〈 Ĵ ( j)

y 〉 = 0, because the symmetry

between the R and L regions implies that 〈 Ĵ (i)y 〉 = 0 for all i . Therefore we obtain that the QFI
is equal to

FQ = 4
∑

i

〈(
Ĵ (i)y

)2
〉
= 4

∑
i

n2
i + 2

〈
N̂
〉
, (38)

where the last equality comes directly from the substitution of (9) and (10) into the definition of
the Ĵ (i)y operator. Also, we used 〈N̂ 〉 = 2

∑
i ni , according to equation (14). Clearly FQ > 〈N̂ 〉, so

the system is entangled. Moreover, one can refer the QFI to the ultimate bound for the precision
of the parameter estimation, which is the Heisenberg limit. For a system with fluctuating number
of particles, this upper bound is equal to 〈N̂ 2

〉. Using (9) and (10) again, we obtain that [41]

〈
N̂ 2
〉
=

〈(∑
i

(
â(i)†R â(i)R + â(i)†L â(i)L

))2〉
= 8

∑
i

n2
i +
〈
N̂
〉
. (39)

For a large number of scattered particles, when 〈N̂ 〉 �
∑

i n2
i , we obtain FQ '

1
2〈N̂ 2

〉. The value
of the QFI, which is only one-half smaller than the Heisenberg limit is a clear indication of
very strong entanglement present in the system in the high-gain regime. At intermediate times,
FQ <

1
2〈N̂ 2

〉 due to mode competition, which has a negative impact on the entanglement as
witnessed by the QFI [42]. To picture this, consider a ‘frustrated case’, where all atoms scatter
uniformly into M pairs of modes, so that all ni ≡ n are equal. In this case, the number of
scattered atoms is simply 〈N̂ 〉 = 2nM , and the QFI is FQ = 4n2 M + 2〈N̂ 〉. The QFI normalized
to the SNL is

FQ

〈N̂ 〉
= 2 +

〈N̂ 〉

M
. (40)

When, on average, there is less than a particle per a set of modes, i.e. 〈N̂〉
M � 1, the QFI

surpasses the SNL only by a factor of 2, a natural reminiscence of atoms being scattered in pairs.
Equation (40) is a simple yet intuitive estimation of the lower bound of useful entanglement in
terms of the number of scattered atoms and occupied modes.

Although usually it is impossible to directly measure the QFI, one can employ some other
estimation scheme, which gives 1θ close to the CRLB from equation (30). For instance, in a
two-region setup as in [30], the entanglement was detected through the phase sensitivity in a
two-step protocol. First, the particles from the two modes were mixed using a radio-frequency
pulse, which can be represented by the unitary operation

Ûmix(θ)= e−iθ Ĵ x , (41)
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where the Ĵ x operator is defined in equation (31). Then, the population imbalance between the
two regions was measured for different values of θ and the phase sensitivity was estimated
using the error propagation formula basing on the second moment of the population imbalance
operator. Introducing the operator Â = Ĵ 2

z the relation reads

12θ =
1

m

〈(1 Â)2〉

( ∂〈 Â〉

∂θ
)2
. (42)

The drop of 12θ below the shot-noise level in the experiment of [30] signaled entanglement
between the scattered particles. A similar method could be employed for the twin-beam
experiment [29], where the particle mixing operation should be implemented using for instance
an optical Bragg pulse rather than a radio-frequency field.

The problem of finding the optimal measurement, which saturates the CRLB (30), is one
of the central issues of quantum estimation theory. For the twin-beam setup and in absence of
decohering influence of the environment, the estimation scheme presented above is optimal for
small mixing angles. However, as soon as the noise starts to affect the system, one must seek for
another phase determination protocols. Nevertheless, usually it is very difficult to find a truely
optimal scheme, which would be easy to implement in the laboratory.

3. Application: twin-beam system

We now apply the above formalism to the twin-beam system of [29]. First, we describe the
physical mechanism which leads to the creation of the two correlated beams. As shown below,
some basic information about the dynamics of the pair production allow to construct a simple
one-dimensional (1D) Bogoliubov model, which can be easily solved numerically.

3.1. Scheme of the experiment

We begin by describing the procedure employed in [29] to produce correlated atom pairs. First,
an almost pure BEC of N0 ≈ 800 87Rb atoms with scattering length equal to a = 5.3 nm was
created at temperature T ≈ 25 nK. The cloud was trapped in a slightly unharmonic potential,
which for our purposes can well be approximated by

V (r)'
1
2mω2

x x2 + 1
2mω2

y y2 + 1
2mω2

z z2, (43)

where atomic mass is equal to m = 1.44 × 10−25 kg, and the frequency ωx = 2π × 16.3 Hz
is much smaller than ωy = 2π × 1.83 kHz and ωz = 2π × 2.50 kHz, so the BEC is strongly
elongated along the x-axis.

After the BEC was created, the trapping potential was shaken in a controlled way, so
the atoms were transferred to the first excited state along the y-direction. In order to achieve
the maximal transfer efficiency, the shaking was optimized using quantum optimal control
theory [43]. Afterwards, binary collisions transfered particle pairs to the ground state of the
potential, and the excess energy 2h̄ωy was converted into back-to-back movement of the two
atoms along x . Momentum conservation ensured, that their wave vectors had equal lengths
k0 ≈

√
2mωy/h̄ and point in opposite directions. Small corrections to the value of k0 may arise

from an effective mean-field potential, as will be discussed below.

11
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3.2. Theoretical description

Neglecting thermal phase fluctuations along the elongated direction x , which is valid at very low
temperatures only [44], the condensate wave function acting as a source for the pair-production
can be found by solving the stationary GPE

µψ(r)=

(
−

h̄2
∇

2

2m
+ V (r)+ g|ψ(r)|2

)
ψ(r), (44)

where µ is the chemical potential. This function can be evaluated numerically, by referring to
the description of the experiment from the previous section, and noting that after the shaking
of the trap, the BEC is in the first excited state ny = 1 along the y-axis and in the ground state
nz = 0 along z. However, this can be approximated by an analytical expression, as argued below.

First note, that since the characteristic energies h̄ωy and h̄ωz are large, and the number
of atoms in the BEC is small, the nonlinear term can be safely neglected in evaluation of the
eigenstates along y and z. As a result, assuming that the total wave-function ψ(r) separates in
three directions (which has been confirmed numerically), we obtain

ψ(r)= φ(x)×ψ (ho)
ny=1(y)×ψ

(ho)
nz=0(z), (45)

where the functions ψ (ho)
ny=1(y) and ψ (ho)

nz=0(z) are the eigen-states of the 1D harmonic potential
in y and z correspondingly. The function φ(x) is found by inserting the above expression into
equation (44) and integrating out the orthogonal directions. As a result, we obtain an effective
equation

(µ− ε⊥) φ(x)=

(
−

h̄2

2m

∂2

∂x2
+ g̃|φ(x)|2 +

1

2
mω2

x x2

)
φ(x), (46)

where zero-point energy equals ε⊥ =
3
2ωy + 1

2ωz and the nonlinearity reads

g̃ = g

[∫
dy

(
ψ
(ho)
ny=1(y)

)4
]

×

[∫
dz
(
ψ
(ho)
nz=0(z)

)4
]

=
3

8π

g

aho,y aho,z
. (47)

Here aho,i =

√
h̄

mωi
are the harmonic oscillator lengths for i = y, z. Since the trap is shallow

in the x-direction, the solution of the stationary GPE (46) can be well approximated by the
Thomas–Fermi (TF) formula [45]

φ(x)=

√
µ̃

g̃

√
1 −

x2

R2
tf

, (48)

where the effective chemical potential is

µ̃= µ− ε⊥ =

(
3g̃N0

√
mω2

x

4
√

2

)2/3

= 492 Hz × h, (49)

leading to a TF radius of Rtf =

√
2µ̃

mω2
x
= 20.75µm.

Within the approximation of neglecting thermal phase fluctuations, we have fully
determined the wave-function of the BEC, which we insert into the Bogoliubov Hamiltonian (3).
Next, we expand the field operator δ̂(r) in an orthonormal basis. Along the y- and z-directions,

12
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it is natural to use the eigen-states of the harmonic oscillator as the basis functions, since it
matches the geometry of the source BEC. Along the x-direction, we use a plane-wave basis,
and get

δ̂(r, t)=

∑
ny ,nz

∫
dk

2π
eikxψ (ho)

ny
(y)ψ (ho)

nz
(z)δ̂(k, ny, nz, t). (50)

Since the atom pairs are emitted into the ground state along y only (which is ensured by the
anisotropy and anharmonicity of the potential), the sum over the eigen-states can be safely
truncated at ny = 0 and nz = 0. This reduces the dynamics of the pair-production to 1D problem
along the x-axis, with the orthogonal directions frozen out, i.e.

δ̂(r, t)' ψ
(ho)
ny=0(y)ψ

(ho)
nz=0(z)

∑
k

eikx

√
L

âk(t), (51)

where L is the quantization volume. We insert this field operator into equation (3), evaluate the
spatial integrals and upon the change of variables âk(t)eiµ̃t

→ âk(t) obtain

Ĥ bog '

∑
k

(
h̄2k2

2m
− (µ̃+ h̄ωy)

)
â†

k (t)âk (t)+
∑
k,k′

(
2 fk−k′ â†

k (t)âk′(t)+ fk+k′

(
â†

k (t)â
†
k′(t)+ h.c.

))
,

(52)

where fq =
2
3

g̃
L

∫
dx e−iqxφ2(x). We solve the resulting Bogoliubov equation numerically, by

taking the exponent of the evolution matrix, and find the matrices Ĉ and Ŝ as defined in
equation (7).

Using the above Hamiltonian, one can also analytically determine k0, i.e. the position of
the central peak. To this end, we employ a two-mode approximation by replacing the function
fq with a Dirac delta, and obtain the Bogoliubov equation

i h̄∂t δ̂k(t)=
h̄2

2m

(
k2

− k2
0

)
δ̂k(t)+

2

3
µ̃ δ̂

†
−k(t), (53)

where k0 is shifted with respect to the harmonic excitation energy due to the mean-field repulsion
and reads

k0 =

√
2m

h̄2

(
h̄ωy −

µ̃

3

)
= 5.35µm−1. (54)

This result is in good agreement with the experimentally measured position of the peak density,
i.e. k0,exp = 5.55(5) µm−1, where the error arises mainly from the mean-field fluctuations.

3.3. Numerical results

In this section, we display the most important characteristics of the twin-beam system, starting
from the solution of the eigen-problem of the density matrix (11). In figure 1 we plot the first
four eigen-values of the density matrix, as a function of time. The inset shows the average
number of scattered atoms 〈N̂ 〉 normalized to the occupation of the BEC, as a function of time.
The Bogoliubov approximation is valid for as long as 〈N̂ 〉 � N0, so we interrupt the simulation
at t = 1.2 ms, when 〈N̂ 〉 ' 15%N0. For longer times, when the depletion of the BEC cannot be
neglected, a atom-number conserving method, such as the one introduced in [46] must be used.
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Figure 1. Populations of the first four eigen-modes of the density matrix (i.e. the eigen-
values) as a function of time. The inset shows the average number of scattered atoms
normalized to the number of atoms in the BEC as a function of time. The Bogoliubov
approximation is valid for as long as this number is much smaller than one. In our case,

we interrupt the calculations at t = 1.2 ms, when 〈N̂ 〉

N0
' 0.15.

In figure 2 we plot the first four eigen-vectors of G(1) localized in the right half-space, i.e.
|ϕ
(i)
R (k)|

2 with i = 1, 2, 3, 4, calculated at an early time t = 0.1 ms and at t = 1.2 ms. Due to the
time–energy uncertainty relation, the eigen-modes localize around k = k0 at later times.

This can be seen even more clearly, by plotting the density ρ(k; t) at these two instants,
as shown in figure 3 (dashed lines). At t = 0.1 ms, two broad beams start to form on top of
the uniform density. Later, at t = 1.2 ms, strongly localized peaks clearly dominate over the flat
background. On top of these curves, we plot the normalized second-order correlation function as
defined in equation (15), with one of the arguments set equal to the resonant wave-vector k0, i.e.
g(2)(k1, k2 ≡ k0; t). At t = 0.1 ms, the cross-correlation, which is governed by the anomalous
density, is very large, i.e. g(2)(−k0, k0; 0.1 ms)' 40. This is a characteristic property of the
Bogoliubov system in the low-occupation regime [36], and indicates strong violation of the
Cauchy–Schwarz inequality (21). Also, for this early time, the width of both g(2) peaks are
much more narrow than the beam size. This is consistent with the results shown in figure 1,
where at early times many eigen-mode pairs of the density matrix are almost equally occupied.
At later times, when a single pair of modes start to become dominant, the width of the peak in
g(2) and the system size approach each other. While this corresponds to beams that are single-
mode with respect to their local one-body properties, the local averaged correlation function
as introduced in equation (20) reaches the limit of G(2)µµ ' 2(

∑
i ni)

2
≡

1
2〈N̂ 〉

2, exceeding the
number fluctuations of a coherent state by a factor of two.

The full correlation function G(2)(k1, k2) at t=1.2 ms, shown in figure 4, reveals both the
local and cross correlations. In typical experiments, however, such a function is difficult to
measure, and one uses collinearly integrated functions of the type

g(2)cl (δk; t)=

∫
G(2)(k,k + δk; t)dk∫
ρ(k; t)ρ(k + δk; t)dk

, (55)
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Figure 2. The modulus square of the first four eigen-vectors localized in the right
sub-space, i.e. |ϕ

(i)
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2 with i = 1, 2, 3, 4. The solid black lines are results of
diagonalization of the density-matrix at t = 0.1 ms while the dashed red lines at t =

1.2 ms. The figure shows how due to the time–energy uncertainty relation, the eigen-
vectors narrow in the course of time around the central wave-vector k0.
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Figure 3. Normalized second-order correlation functions g(2)(k1, k2 ≡ k0; t) for fixed
k2 (solid lines, left y-axis), and density profiles ρ(k1; t) (dashed lines, right axis) in
momentum space. The results are calculated at t = 0.1 ms (a) and t = 1.2 ms (b). At
early times, many momentum modes are occupied and the width of g(2) is much smaller
than the beam size. Later, two distinct peaks emerge, which are almost single-mode.

where the integrals run over an appropriately chosen momentum region [17, 20]. For symmetric,
non-local correlations, back-to-back integration of the type

g(2)bb (k+; t)=

∫
G(2)(k,k+ − k; t)dk∫
ρ(k; t)ρ(k+ − k; t)dk

(56)
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Figure 4. False-color plot of non-normalized correlation function G(2)(k1, k2; t =

1.2 ms). Contributions of G(1) and M in equation (16) are shown in blue and red hues,
respectively. The dashed line indicates the position of the cut shown in figure 3(b).
Arrows indicate the axes of figure 5.

is used. The corresponding normalized functions for our system g(2)cl (δk; t), g(2)bb (δk; t) are shown
in figure 5 at t = 1.2 ms. For both local (solid) and non-local (dotted) functions, correlations
peaks, which do not span the entire populated range (grey area) and follow a Gaussian shape,
are clearly present.

In the next step we take toward future comparison with experiments, we present the results
not in momentum space, but rather using real-space data calculated after some finite time τ of
ballistic expansion. Only in the limit of τ → ∞ (far field), the real-space data is equivalent to
the initial momentum space distribution (if the expanding clouds are sufficiently dilute, so that
the mean-field repulsion can be safely neglected). In [29], the expansion time was τ = 46 ms,
which was sufficient to resolve the twin-beam peaks. Nevertheless, the system was not fully in
the far-field regime yet, which may have some impact on the correlation functions. As shown in
figure 5, the finite expansion time affects the back-to-back peak at (k0,−k0)much more strongly
than the collinear HBT peak, leading to smearing of the measured g(2)bb (k+; t) (dash-dotted line)
over the entire size of the twin-beam packets. This observation is consistent with some previous
numerical results [47].

The different behavior of these two types of correlations in the near field can be explained
using following semi-classical arguments. First, consider a single body function G(1)(k1, k2),
which according to equation (16) determines the local second-order correlations. The time,
when the system enters the far-field regime, corresponds to an instant, when the measured
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Figure 5. Averaged, normalized second-order correlation functions g(2)(δk; t = 1.2 ms),
as obtained in experiments. Solid line: momentum-space peak near k1 = k2 = k0, shown
along the difference coordinate δk = k1 − k2 as indicated by the arrow in figure 4.
Dotted line: peak near −k1 = k2 = k0, along the sum coordinate k+ = k1 + k2. Dashed
and dash-dotted lines: respective functions, taking into account the finite expansion time
in time-of-flight momentum measurements. The grey shaded area is proportional to the
normalization

∫
ρ(k)ρ(k + δk)dk.

density in position space samples the momentum distribution. If a particle is propagating freely,
starting from x0, for a time τ and having velocity v, then it is registered at x0 + vτ , which
recovers the initial momentum if x0 can be neglected when compared to the characteristic
velocity spread σvτ . From the width of momentum distribution shown in figure 3, we obtain
that σv ≈ 290µm s−1 while the position density profile gives x0 ≈ 6.3µm. Therefore, σvτ/x0 ≈

2.12, which suggests that G(1) after τ = 46 ms of ballistic expansion is approximately in the
far-field regime.

On the other hand, the anomalous density M(k1, k2) is a two-body function, which
governs the opposite correlations between a pair of atoms. If two atoms are scattered from
the source at position x̃ with velocities v1 and v2, then after the ballistic expansions time τ their
total coordinate is x1 + x2 = (v1 + v2)τ + 2x̃ . In the far-field regime, the position measurement
samples momentum correlations meaning that the first term v+ = v1 + v2 dominates over 2x̃/τ .
The characteristic range of v+ can be estimated from figure 5 giving v+ ≈ 146µm s−1. The
range of allowed positions of the collisions is given by the size of the mother cloud, thus
x̃ ≈ Rtf ≈ 21µm. Therefore, we obtain that v+τ/2x̃ ≈ 0.16, which shows that the anomalous
density after τ = 46 ms—and in consequence the opposite momentum correlations—is not in
the far-field regime. We conclude that the broadening of the opposite correlations results mainly
from the spread in the positions of the scattering events.

Note that although at every instant of the evolution, the field operator δ̂(k, t) can be written
as a sum of independently squeezed modes, at very early times the division between the right
and left modes is unjustified, because the two peaks are not yet fully separated. However, at
t = 0.1 ms when the density distribution is broad, the number of scattered atoms is 〈N̂ 〉 ' 2.
Therefore, the system at such early time is hardly accessible experimentally so the quantum state
of much less then a single particle is not of interest. As soon as the two peaks are well-formed,
at t ≈ 0.3 ms, with 〈N̂ 〉 ' 8 scattered atoms, all the general considerations from section 2 apply.

Finally, in figure 6 we plot the QFI from equation (38) as a function of time and normalized
to the Heisenberg limit, i.e. FQ

/
〈N̂ 2

〉. Instead of interrupting the simulation at 1.2 ms, where
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Figure 6. The QFI as a function of time, normalized to 〈N̂ 2
〉. The horizontal gray dashed

line denotes the best possible value for the Bogoliubov system, which is achieved in
a regime, where only a single pair of left/right modes is relevant. The vertical gray
dashed line denotes the time t = 1.2 ms, when the Bogoliubov simulation should be
interrupted. In the inset, we show the number of pairs of left/right modes that have
at least 10% of occupation of the largest modes. We see that only around 4.2 ms, the
two-mode approximation is valid, as denoted by the horizontal dashed line.

the scattered fraction of atoms becomes non-negligible and particle number conservation is
strongly violated, we extend the calculation up to 7 ms, when the number of scattered atoms
significantly exceeds 15% of N0. This is done solely to illustrate that, once the population of
one of the modes dominates, FQ →

1
2〈N̂ 2

〉, as argued in section 2.5. Note that the dominance
of a single mode pair at long times is also predicted by the number-conserving theory [46],
justifying this proceeding. Indeed, in the inset, we show the number of pairs of right/left modes
which have an occupation bigger or equal to 10% of the largest mode. This approximately
tells, how many modes are significantly occupied in the system. At early times, there are over
100 pairs of modes. At 1.2 ms there are still five significantly occupied pairs, and only around
4.2 ms a single pair of modes starts to dominate. At the same time the QFI approaches its upper
bound.

4. Concluding remarks

We have developed a simple Bogoliubov model describing twin-atom beam experiments similar
to [28, 29]. Due to the elongated geometry of the trapping potential, the dynamics is 1D. As a
consequence, the final step of our method can be easily solved numerically without the need for
any stochastic method. Furthermore, basic information about the scattered particles can directly
be drawn from the general properties of the solution of the Bogoliubov equations. In this way,
we can quantitatively characterize the mode structure and correlation functions of the scattered
atoms. Also, quite generally, we can show that the population imbalance between the two beams
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is ideally squeezed and that the system is strongly entangled. These general observations can
be applied to most recent experiments, where the atomic pairs scatter into two well-separated
regions. Finally, using the notion of the QFI, we have derived a simple lower bound for the useful
entanglement of the system. This expression employs only the average number of scattered
particles and the number of occupied modes.

Having understood the fundamental properties of few-mode twin beams, further steps can
be made to take into account more specific issues of experimental implementations. A general
feature of strongly elongated Bose gases at realistic temperatures, such as the source cloud
in [29], is the quasi-condensation [44], where the coherence along the x-axis is limited due to
thermal phase fluctuations. Although these fluctuations do not alter the general considerations
of section 2, they affect the emission dynamics [46], and also might have influence on the spatial
properties of both the density and the correlation functions [47]. Also, strong depletion of the
source state in the experiment [29] precludes a quantitative comparison with the Bogoliubov
theory.

In future, our method could be applied to the analysis of some more complicated
schemes, where atoms scatter into two well-separated regions, such as the Rarity–Tapster-type
experiments [48]. Also, according to our results, the two-region state could be used as an input
to the Mach–Zehnder-like interferometer, similarly to [30].

Finally, note that the Bogoliubov approximation neglects the secondary collisions between
the scattered particles and the atoms from the source cloud. When a scattered atom propagates
through the BEC, the number of such events that are experienced by each particle can be
estimated as follows. First, a cross-section for the collision of two indistinguishable bosons
is related to the scattering length by the formula σ = 8πa2. The mean free path is not smaller
then lfree =

1
nσ , where n is the peak density of the BEC. The number of times a scattered particle,

which is traveling through a BEC, collides with the atoms from the cloud is given by the ratio
of the size of the condensate, which is equal to 2Rtf, to the mean free path. Therefore, we
obtain that the number of secondary collisions is equal to Ncol = 2Rtf/ lfree = 16πa2 n Rtf. By
plugging in the experimental numbers, we obtain Ncol = 0.38, which well justifies the use of the
Bogoliubov approximation.
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[22] Dall R G, Byron L J, Truscott A G, Dennis G R, Johnsson M T and Hope J J 2009 Phys. Rev. A 79 011601
[23] Pertot D, Gadway B and Schneble D 2010 Phys. Rev. Lett. 104 200402
[24] RuGway W, Hodgman S S, Dall R G, Johnsson M T and Truscott A G 2011 Phys. Rev. Lett. 107 075301
[25] Vogels J M, Xu K and Ketterle W 2002 Phys. Rev. Lett. 89 020401
[26] Deng L, Hagley E W, Wen J, Trippenbach M, Band Y, Julienne P S, Simsarian J E, Helmerson K, Rolston S L

and Phillips W D 1999 Nature 398 218
[27] Campbell G K, Mun J, Boyd M, Streed E W, Ketterle W and Pritchard D E 2006 Phys. Rev. Lett. 96 020406
[28] Bonneau M, Ruaudel J, Lopes R, Jaskula J-C, Aspect S, Boiron D and Westbrook C I 2013 Phys. Rev. A

87 061603
[29] Bücker R, Grond J, Manz S, Berrada T, Betz T, Koller C, Hohenester U, Schumm T, Perrin A and

Schmiedmayer J 2001 Nature Phys. 7 608
[30] Lücke B et al 2011 Science 11 773
[31] Gross C, Strobel H, Nicklas E, Zibold T, Bar-Gill N, Kurizki G and Oberthaler M K 2011 Nature 480 219
[32] Bookjans E M, Hamley C D and Chapman M S 2011 Phys. Rev. Lett. 107 210406
[33] Braunstein S L 2005 Phys. Rev. A 71 055801
[34] Dziarmaga J and Sacha K 2006 J. Phys. B: At. Mol. Opt. Phys. 39 57
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