674 research outputs found
Estimating Acceleration and Lane-Changing Dynamics Based on NGSIM Trajectory Data
The NGSIM trajectory data sets provide longitudinal and lateral positional
information for all vehicles in certain spatiotemporal regions. Velocity and
acceleration information cannot be extracted directly since the noise in the
NGSIM positional information is greatly increased by the necessary numerical
differentiations. We propose a smoothing algorithm for positions, velocities
and accelerations that can also be applied near the boundaries. The smoothing
time interval is estimated based on velocity time series and the variance of
the processed acceleration time series. The velocity information obtained in
this way is then applied to calculate the density function of the
two-dimensional distribution of velocity and inverse distance, and the density
of the distribution corresponding to the ``microscopic'' fundamental diagram.
Furthermore, it is used to calculate the distributions of time gaps and
times-to-collision, conditioned to several ranges of velocities and velocity
differences. By simulating virtual stationary detectors we show that the
probability for critical values of the times-to-collision is greatly
underestimated when estimated from single-vehicle data of stationary detectors.
Finally, we investigate the lane-changing process and formulate a quantitative
criterion for the duration of lane changes that is based on the trajectory
density in normalized coordinates. Remarkably, there is a very noisy but
significant velocity advantage in favor of the targeted lane that decreases
immediately before the change due to anticipatory accelerations
Probing complex RNA structures by mechanical force
RNA secondary structures of increasing complexity are probed combining single
molecule stretching experiments and stochastic unfolding/refolding simulations.
We find that force-induced unfolding pathways cannot usually be interpretated
by solely invoking successive openings of native helices. Indeed, typical
force-extension responses of complex RNA molecules are largely shaped by
stretching-induced, long-lived intermediates including non-native helices. This
is first shown for a set of generic structural motifs found in larger RNA
structures, and then for Escherichia coli's 1540-base long 16S ribosomal RNA,
which exhibits a surprisingly well-structured and reproducible unfolding
pathway under mechanical stretching. Using out-of-equilibrium stochastic
simulations, we demonstrate that these experimental results reflect the slow
relaxation of RNA structural rearrangements. Hence, micromanipulations of
single RNA molecules probe both their native structures and long-lived
intermediates, so-called "kinetic traps", thereby capturing -at the single
molecular level- the hallmark of RNA folding/unfolding dynamics.Comment: 9 pages, 9 figure
Interpreting the Wide Scattering of Synchronized Traffic Data by Time Gap Statistics
Based on the statistical evaluation of experimental single-vehicle data, we
propose a quantitative interpretation of the erratic scattering of flow-density
data in synchronized traffic flows. A correlation analysis suggests that the
dynamical flow-density data are well compatible with the so-called jam line
characterizing fully developed traffic jams, if one takes into account the
variation of their propagation speed due to the large variation of the netto
time gaps (the inhomogeneity of traffic flow). The form of the time gap
distribution depends not only on the density, but also on the measurement cross
section: The most probable netto time gap in congested traffic flow upstream of
a bottleneck is significantly increased compared to uncongested freeway
sections. Moreover, we identify different power-law scaling laws for the
relative variance of netto time gaps as a function of the sampling size. While
the exponent is -1 in free traffic corresponding to statistically independent
time gaps, the exponent is about -2/3 in congested traffic flow because of
correlations between queued vehicles.Comment: For related publications see http://www.helbing.or
Prediction and statistics of pseudoknots in RNA structures using exactly clustered stochastic simulations
Ab initio RNA secondary structure predictions have long dismissed helices
interior to loops, so-called pseudoknots, despite their structural importance.
Here, we report that many pseudoknots can be predicted through long time scales
RNA folding simulations, which follow the stochastic closing and opening of
individual RNA helices. The numerical efficacy of these stochastic simulations
relies on an O(n^2) clustering algorithm which computes time averages over a
continously updated set of n reference structures. Applying this exact
stochastic clustering approach, we typically obtain a 5- to 100-fold simulation
speed-up for RNA sequences up to 400 bases, while the effective acceleration
can be as high as 100,000-fold for short multistable molecules (<150 bases). We
performed extensive folding statistics on random and natural RNA sequences, and
found that pseudoknots are unevenly distributed amongst RNAstructures and
account for up to 30% of base pairs in G+C rich RNA sequences (Online RNA
folding kinetics server including pseudoknots : http://kinefold.u-strasbg.fr/
).Comment: 6 pages, 5 figure
Temporal Modulation of the Control Parameter in Electroconvection in the Nematic Liquid Crystal I52
I report on the effects of a periodic modulation of the control parameter on
electroconvection in the nematic liquid crystal I52. Without modulation, the
primary bifurcation from the uniform state is a direct transition to a state of
spatiotemporal chaos. This state is the result of the interaction of four,
degenerate traveling modes: right and left zig and zag rolls. Periodic
modulations of the driving voltage at approximately twice the traveling
frequency are used. For a large enough modulation amplitude, standing waves
that consist of only zig or zag rolls are stabilized. The standing waves
exhibit regular behavior in space and time. Therefore, modulation of the
control parameter represents a method of eliminating spatiotemporal chaos. As
the modulation frequency is varied away from twice the traveling frequency,
standing waves that are a superposition of zig and zag rolls, i.e. standing
rectangles, are observed. These results are compared with existing predictions
based on coupled complex Ginzburg-Landau equations
Life events and hemodynamic stress reactivity in the middle-aged and elderly
Recent versions of the reactivity hypothesis, which consider it to be the product of stress exposure and exaggerated haemodynamic reactions to stress that confers cardiovascular disease risk, assume that reactivity is independent of the experience of stressful life events. This assumption was tested in two substantial cohorts, one middle-aged and one elderly. Participants had to indicate from a list of major stressful life events up to six they had experienced in the previous two years. They were also asked to rate how disruptive and stressful they were, at the time of occurrence and now. Blood pressure and pulse rate were measured at rest and in response to acute mental stress. Those who rated the events as highly disruptive at the time of exposure and currently exhibited blunted systolic blood pressure reactions to acute stress. The present results suggest that acute stress reactivity may not be independent of stressful life events experience
Congested Traffic States in Empirical Observations and Microscopic Simulations
We present data from several German freeways showing different kinds of
congested traffic forming near road inhomogeneities, specifically lane
closings, intersections, or uphill gradients. The states are localized or
extended, homogeneous or oscillating. Combined states are observed as well,
like the coexistence of moving localized clusters and clusters pinned at road
inhomogeneities, or regions of oscillating congested traffic upstream of nearly
homogeneous congested traffic. The experimental findings are consistent with a
recently proposed theoretical phase diagram for traffic near on-ramps [D.
Helbing, A. Hennecke, and M. Treiber, Phys. Rev. Lett. {\bf 82}, 4360 (1999)].
We simulate these situations with a novel continuous microscopic single-lane
model, the ``intelligent driver model'' (IDM), using the empirical boundary
conditions. All observations, including the coexistence of states, are
qualitatively reproduced by describing inhomogeneities with local variations of
one model parameter.
We show that the results of the microscopic model can be understood by
formulating the theoretical phase diagram for bottlenecks in a more general
way. In particular, a local drop of the road capacity induced by parameter
variations has practically the same effect as an on-ramp.Comment: Now published in Phys. Rev. E. Minor changes suggested by a referee
are incorporated; full bibliographic info added. For related work see
http://www.mtreiber.de/ and http://www.helbing.org
Long-lived states in synchronized traffic flow. Empirical prompt and dynamical trap model
The present paper proposes a novel interpretation of the widely scattered
states (called synchronized traffic) stimulated by Kerner's hypotheses about
the existence of a multitude of metastable states in the fundamental diagram.
Using single vehicle data collected at the German highway A1, temporal velocity
patterns have been analyzed to show a collection of certain fragments with
approximately constant velocities and sharp jumps between them. The particular
velocity values in these fragments vary in a wide range. In contrast, the flow
rate is more or less constant because its fluctuations are mainly due to the
discreteness of traffic flow.
Subsequently, we develop a model for synchronized traffic that can explain
these characteristics. Following previous work (I.A.Lubashevsky, R.Mahnke,
Phys. Rev. E v. 62, p. 6082, 2000) the vehicle flow is specified by car
density, mean velocity, and additional order parameters and that are
due to the many-particle effects of the vehicle interaction. The parameter
describes the multilane correlations in the vehicle motion. Together with the
car density it determines directly the mean velocity. The parameter , in
contrast, controls the evolution of only. The model assumes that
fluctuates randomly around the value corresponding to the car configuration
optimal for lane changing. When it deviates from this value the lane change is
depressed for all cars forming a local cluster. Since exactly the overtaking
manoeuvres of these cars cause the order parameter to vary, the evolution
of the car arrangement becomes frozen for a certain time. In other words, the
evolution equations form certain dynamical traps responsible for the long-time
correlations in the synchronized mode.Comment: 16 pages, 10 figures, RevTeX
- …