898 research outputs found

    Quantum criticality with a twist - interplay of correlations and Kohn anomalies in three dimensions

    Full text link
    A general understanding of quantum phase transitions in strongly correlated materials is still lacking. By exploiting a cutting-edge quantum many-body approach, the dynamical vertex approximation, we make an important progress, determining the quantum critical properties of the antiferromagnetic transition in the fundamental model for correlated electrons, the Hubbard model in three dimensions. In particular, we demonstrate that -in contradiction to the conventional Hertz-Millis-Moriya theory- its quantum critical behavior is driven by the Kohn anomalies of the Fermi surface, even when electronic correlations become strong.Comment: 6 pages, 4 figures (8 pages Supplemental Material

    Lagrangian Structure Functions in Turbulence: A Quantitative Comparison between Experiment and Direct Numerical Simulation

    Get PDF
    A detailed comparison between data from experimental measurements and numerical simulations of Lagrangian velocity structure functions in turbulence is presented. By integrating information from experiments and numerics, a quantitative understanding of the velocity scaling properties over a wide range of time scales and Reynolds numbers is achieved. The local scaling properties of the Lagrangian velocity increments for the experimental and numerical data are in good quantitative agreement for all time lags. The degree of intermittency changes when measured close to the Kolmogorov time scales or at larger time lags. This study resolves apparent disagreements between experiment and numerics.Comment: 13 RevTeX pages (2 columns) + 8 figures include
    corecore