842 research outputs found
Ground state of an distorted diamond chain - model of
We study the ground state of the model Hamiltonian of the trimerized
quantum Heisenberg chain in which
the non-magnetic ground state is observed recently. This model consists of
stacked trimers and has three kinds of coupling constants between spins; the
intra-trimer coupling constant and the inter-trimer coupling constants
and . All of these constants are assumed to be antiferromagnetic. By
use of the analytical method and physical considerations, we show that there
are three phases on the plane (, ), the dimer phase, the spin fluid phase
and the ferrimagnetic phase. The dimer phase is caused by the frustration
effect. In the dimer phase, there exists the excitation gap between the
two-fold degenerate ground state and the first excited state, which explains
the non-magnetic ground state observed in . We also obtain the phase diagram on the
plane from the numerical diagonalization data for finite systems by use of the
Lanczos algorithm.Comment: LaTeX2e, 15 pages, 21 eps figures, typos corrected, slightly detailed
explanation adde
Finite-Field Ground State of the S=1 Antiferromagnetic-Ferromagnetic Bond-Alternating Chain
We investigate the finite-field ground state of the S=1
antiferromagnetic-ferromagnetic bond-alternating chain described by the
Hamiltonian
{\calH}=\sum\nolimits_{\ell}\bigl\{\vecS_{2\ell-1}\cdot\vecS_{2\ell}
+J\vecS_{2\ell}\cdot\vecS_{2\ell+1}\bigr\} +D\sum\nolimits_{\ell}
\bigl(S_{\ell}^z)^2 -H\textstyle\sum\nolimits_\ell S_\ell^z, where
\hbox{} and \hbox{}. We find that two kinds of
magnetization plateaux at a half of the saturation magnetization, the
1/2-plateaux, appear in the ground-state magnetization curve; one of them is of
the Haldane type and the other is of the large--type. We determine the
1/2-plateau phase diagram on the versus plane, applying the
twisted-boundary-condition level spectroscopy methods developed by Kitazawa and
Nomura. We also calculate the ground-state magnetization curves and the
magnetization phase diagrams by means of the density-matrix
renormalization-group method
Convergence of the Allen-Cahn equation with Neumann boundary conditions
We study a singular limit problem of the Allen-Cahn equation with Neumann
boundary conditions and general initial data of uniformly bounded energy. We
prove that the time-parametrized family of limit energy measures is Brakke's
mean curvature flow with a generalized right angle condition on the boundary.Comment: 26 pages, 1 figur
Co-operative density wave and giant spin gap in the quarter-filled zigzag ladder
Strong co-operative interactions occur between four different broken
symmetries involving charge-ordering and bond distortions in the quarter-filled
correlated zigzag electron ladder. The ground state is singlet, with spin gap
several times larger than in the spin-Peierls state of the one-dimensional
quarter-filled chain with the same parameters. We propose the quarter-filled
zigzag electron ladder model for several different organic charge-transfer
solids with coupled pairs of quasi-one-dimensional stacks, the spin-gap
transition temperatures in which are unusually high.Comment: 4 pages, 4 EPS figures. accepted in Physical Review Letter
Spin and chiral orderings of frustrated quantum spin chains
Ordering of frustrated S=1/2 and 1 XY and Heisenberg spin chains with the
competing nearest- and next-nearest-neighbor antiferromagnetic couplings is
studied by exact diagonalization and density-matrix renormalization-group
methods. It is found that the S=1 XY chain exhibits both gapless and gapped
`chiral' phases characterized by the spontaneous breaking of parity, in which
the long-range order parameter is a chirality, , whereas the spin correlation decays either
algebraically or exponentially. Such chiral phases are not realized in the
S=1/2 XY chain nor in the Heisenberg chains.Comment: 4 pages, 5 EPS-figures, LaTeX(RevTeX),to appear in J.Phys.Soc.Japa
Dimerization-induced enhancement of the spin gap in the quarter-filled two-leg rectangular ladder
We report density-matrix renormalization group calculations of spin gaps in
the quarter-filled correlated two-leg rectangular ladder with bond-dimerization
along the legs of the ladder. In the small rung-coupling region, dimerization
along the leg bonds can lead to large enhancement of the spin gap.
Electron-electron interactions further enhance the spin gap, which is nonzero
for all values of the rung electron hopping and for arbitrarily small
bond-dimerization. Very large spin gaps, as are found experimentally in
quarter-filled band organic charge-transfer solids with coupled pairs of
quasi-one-dimensional stacks, however, occur within the model only for large
dimerization and rung electron hopping that are nearly equal to the hopping
along the legs. Coexistence of charge order and spin gap is also possible
within the model for not too large intersite Coulomb interaction
Universal emergence of the one-third plateau in the magnetization process of frustrated quantum spin chains
We present a numerical study of the magnetization process of frustrated
quantum spin-S chains with S=1, 3/2, 2 as well as the classical limit. Using
the exact diagonalization and density-matrix renormalization techniques, we
provide evidence that a plateau at one third of the saturation magnetization
exists in the magnetization curve of frustrated spin-S chains with S>1/2.
Similar to the case of S=1/2, this plateau state breaks the translational
symmetry of the Hamiltonian and realizes an up-up-down pattern in the spin
component parallel to the external field. Our study further shows that this
plateau exists both in the cases of an isotropic exchange and in the easy-axis
regime for spin-S=1, 3/2, and 2, but is absent in classical frustrated spin
chains with isotropic interactions. We discuss the magnetic phase diagram of
frustrated spin-1 and spin-3/2 chains as well as other emergent features of the
magnetization process such as kink singularities, jumps, and even-odd effects.
A quantitative comparison of the one-third plateau in the easy-axis regime
between spin-1 and spin-3/2 chains on the one hand and the classical frustrated
chain on the other hand indicates that the critical frustration and the phase
boundaries of this state rapidly approach the classical result as the spin S
increases.Comment: 15 pages RevTex4, 13 figure
How to distinguish the Haldane/Large-D state and the intermediate-D state in an S=2 quantum spin chain with the XXZ and on-site anisotropies
We numerically investigate the ground-state phase diagram of an S=2 quantum
spin chain with the and on-site anisotropies described by , where denotes the XXZ anisotropy parameter of the
nearest-neighbor interactions and the on-site anisotropy parameter. We
restrict ourselves to the and case for simplicity. Our main
purpose is to obtain the definite conclusion whether there exists or not the
intermediate- (ID) phase, which was proposed by Oshikawa in 1992 and has
been believed to be absent since the DMRG studies in the latter half of 1990's.
In the phase diagram with and there appear the XY state, the
Haldane state, the ID state, the large- (LD) state and the N\'eel state. In
the analysis of the numerical data it is important to distinguish three gapped
states; the Haldane state, the ID state and the LD state. We give a physical
and intuitive explanation for our level spectroscopy method how to distinguish
these three phases.Comment: Proceedings of "International Conference on Frustration in Condensed
Matter (ICFCM)" (Jan. 11-14, 2011, Sendai, Japan
Magnetization Plateau of an S=1 Frustrated Spin Ladder
We study the magnetization plateau at 1/4 of the saturation magnetization of
the S=1 antiferromagnetic spin ladder both analytically and numerically, with
the aim of explaining recent experimental results on BIP-TENO by Goto et al. We
propose two mechanisms for the plateau formation and clarify the plateau phase
diagram on the plane of the coupling constants between spins
- …