30 research outputs found

    Modeling coronal magnetic field using spherical geometry: cases with several active regions

    Full text link
    The magnetic fields in the solar atmosphere structure the plasma, store free magnetic energy and produce a wide variety of active solar phenomena, like flare and coronal mass ejections(CMEs). The distribution and strength of magnetic fields are routinely measured in the solar surface(photosphere). Therefore, there is considerable interest in accurately modeling the 3D structure of the coronal magnetic field using photospheric vector magnetograms. Knowledge of the 3D structure of magnetic field lines also help us to interpret other coronal observations, e.g., EUV images of the radiating coronal plasma. Nonlinear force-free field (NLFFF) models are thought to be viable tools for those task. Usually those models use Cartesian geometry. However, the spherical nature of the solar surface cannot be neglected when the field of view is large. In this work, we model the coronal magnetic field above multiple active regions using NLFFF extrapolation code using vector magnetograph data from the Synoptic Optical Long-term Investigations of the Sun survey (SOLIS)/ Vector Spectromagnetograph (VSM) as a boundary conditions. We compare projections of the resulting magnetic field lines solutions with their respective coronal EUV-images from the Atmospheric Imaging Assembly (SDO/AIA) observed on October 11, 2011 and November 13, 2012. This study has found that the NLFFF model in spherical geometry reconstructs the magnetic configurations for several active regions which agrees with observations. During October 11, 2011 observation, there are substantial number of trans-equatorial loops carrying electric current.Comment: 3 Figures, Submitted to Astrophysics and Space Science Journa

    Magnetic Connectivity between Active Regions 10987, 10988, and 10989 by Means of Nonlinear Force-Free Field Extrapolation

    Full text link
    Extrapolation codes for modelling the magnetic field in the corona in cartesian geometry do not take the curvature of the Sun's surface into account and can only be applied to relatively small areas, \textit{e.g.}, a single active region. We apply a method for nonlinear force-free coronal magnetic field modelling of photospheric vector magnetograms in spherical geometry which allows us to study the connectivity between multi-active regions. We use vector magnetograph data from the Synoptic Optical Long-term Investigations of the Sun survey (SOLIS)/Vector Spectromagnetograph(VSM) to model the coronal magnetic field, where we study three neighbouring magnetically connected active regions (ARs: 10987, 10988, 10989) observed on 28, 29, and 30 March 2008, respectively. We compare the magnetic field topologies and the magnetic energy densities and study the connectivities between the active regions(ARs). We have studied the time evolution of magnetic field over the period of three days and found no major changes in topologies as there was no major eruption event. From this study we have concluded that active regions are much more connected magnetically than the electric current.Comment: Solar Physic

    Coronal Magnetic Field Structure and Evolution for Flaring AR 11117 and its Surroundings

    Full text link
    In this study, photospheric vector magnetograms obtained with the Synoptic Optical Long-term Investigations of the Sun survey (SOLIS), are used as boundary conditions to model the three-dimensional nonlinear force-free (NLFF) coronal magnetic fields as a sequence of nonlinear force-free equilibria in spherical geometry. We study the coronal magnetic field structure inside active regions and its temporal evolution. We compare the magnetic field configuration obtained from NLFF extrapolation before and after flaring event in active region (AR) 11117 and its surroundings observed on 27 October 2010. We compare the magnetic field topologies and the magnetic energy densities and study the connectivities between AR 11117 and its surroundings. During the investigated time period, we estimate the change in free magnetic energy from before to after the flare to be 1.74x10^{32}erg which represents about 13.5% of nonlinear force-free magnetic energy before the flare. In this study, we find that electric currents from AR 11117 to its surroundings were disrupted after the flare.Comment: 14 pages, 14 figures, Accepted by Solar Physics Journa

    Urban malaria and associated risk factors in Jimma town, south-west Ethiopia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria kills millions around the world. Until recently it was believed to be a disease of rural areas, since the <it>Anopheles </it>mosquito, which transmits <it>Plasmodium </it>species breeds in rural areas. Urban malaria is emerging as a potential, but "avertable" crisis, in Africa. In view of the rapidly growing number of small and medium-sized towns in Ethiopia there is a pressing need to improve the understanding of the epidemiology of malaria. Therefore, the aim of this study was to determine malaria prevalence and associated risk factors in Jimma town.</p> <p>Methods</p> <p>A cross-sectional study was carried out in Jimma town from April 1 to May 28, 2010. 804 study participants were included from 291 households for microscopic examination of malaria parasites. Socio-demography data and risk factors were collected using structured questionnaires. Logistic regression analysis was done using SPSS 15.0 statistical software.</p> <p>Results</p> <p>From a total of 804 study participants in current survey only 42 (5.2%) were positive for malaria parasites. <it>Plasmodium vivax, Plasmodium falciparum </it>and mixed infection accounted 71.4%, 26.2% and 2.4%, respectively. Higher malaria prevalence rate was observed among under-five children (11%). Those who do not use insecticide-treated bed nets (ITN) were more likely to be infected with malaria (OR = 13.6; 95% CI 4.9-37.2, p < 0.001) compared with those who use the ITN. Living in areas where stagnant water existed (OR = 2.1; 95% CI 1.00-4.2, p = 0.047) and its distance of existence <1 km from the house(OR = 2.1; 95% CI 2.0-15.8, p = 0.001) were more likely to be infected with malaria parasite compared with those who live away from stagnant at a distance greater than 1 km.</p> <p>Conclusion</p> <p>Malaria is a major health problem with <it>P. vivax </it>becoming a predominant species in the town. The prevalence was strongly associated with proximity of residence to potential mosquito breeding sites. Malaria is affecting significant proportions of the urban settlers and human activities nevertheless play an important role in bringing the mosquito breeding sites closer to residences.</p

    Zoonotic tuberculosis in a high bovine tuberculosis burden area of Ethiopia

    Get PDF
    BackgroundTuberculosis (TB) is a major cause of ill health and one of the leading causes of death worldwide, caused by species of the Mycobacterium tuberculosis complex (MTBC), with Mycobacterium tuberculosis being the dominant pathogen in humans and Mycobacterium bovis in cattle. Zoonotic transmission of TB (zTB) to humans is frequent particularly where TB prevalence is high in cattle. In this study, we explored the prevalence of zTB in central Ethiopia, an area highly affected by bovine TB (bTB) in cattle.MethodA convenient sample of 385 patients with pulmonary tuberculosis (PTB, N = 287) and tuberculous lymphadenitis (TBLN, N = 98) were included in this cross-sectional study in central Ethiopia. Sputum and fine needle aspirate (FNA) samples were obtained from patients with PTB and TBLN, respectively, and cultures were performed using BACTEC™ MGIT™ 960. All culture positive samples were subjected to quantitative PCR (qPCR) assays, targeting IS1081, RD9 and RD4 genomic regions for detection of MTBC, M. tuberculosis and M. bovis, respectively.ResultsTwo hundred and fifty-five out of 385 sampled patients were culture positive and all were isolates identified as MTBC by being positive for the IS1081 assay. Among them, 249 (97.6%) samples had also a positive RD9 result (intact RD9 locus) and were consequently classified as M. tuberculosis. The remaining six (2.4%) isolates were RD4 deficient and thereby classified as M. bovis. Five out of these six M. bovis strains originated from PTB patients whereas one was isolated from a TBLN patient. Occupational risk and the widespread consumption of raw animal products were identified as potential sources of M. bovis infection in humans, and the isolation of M. bovis from PTB patients suggests the possibility of human-to-human transmission, particularly in patients with no known contact history with animals.ConclusionThe detected proportion of culture positive cases of 2.4% being M. bovis from this region was higher zTB rate than previously reported for the general population of Ethiopia. Patients with M. bovis infection are more likely to get less efficient TB treatment because M. bovis is inherently resistant to pyrazinamide. MTBC species identification should be performed where M. bovis is common in cattle, especially in patients who have a history of recurrence or treatment failure
    corecore