23 research outputs found

    The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2.

    No full text
    Histone-modifying enzymes play essential roles in physiological and aberrant gene regulation. Since histone deacetylases (HDACs) are promising targets of cancer therapy, it is important to understand the mechanisms of HDAC regulation. Selective modulators of HDAC isoenzymes could serve as efficient and well-tolerated drugs. We show that HDAC2 undergoes basal turnover by the ubiquitin–proteasome pathway. Valproic acid (VPA), in addition to selectively inhibiting the catalytic activity of class I HDACs, induces proteasomal degradation of HDAC2, in contrast to other inhibitors such as trichostatin A (TSA). Basal and VPA-induced HDAC2 turnover critically depend on the E2 ubiquitin conjugase Ubc8 and the E3 ubiquitin ligase RLIM. Ubc8 gene expression is induced by both VPA and TSA, whereas only TSA simultaneously reduces RLIM protein levels and therefore fails to induce HDAC2 degradation. Thus, poly-ubiquitination and proteasomal degradation provide an isoenzyme-selective mechanism for downregulation of HDAC2

    Deletion of the tissue response against alginate-pll capsules by temporary release of co-encapsulated steroids

    No full text
    Transplantation of encapsulated living cells is a promising approach for the treatment of a wide variety of diseases. Large-scale application of the technique, however, is hampered by inflammatory responses against the capsules. In the present study, we investigate whether tissue responses against alginate-PLL-alginate capsules can be modulated by co-encapsulation and temporary release of immunomodulating factors such as dexamethasone. Such an approach may be mandatory in order to increase the function and survival of encapsulated tissue since it has been shown that the tissue response can be caused by many, insurmountable factors. In an in vitro assay, we demonstrated an antiproliferative effect of dexamethasone-containing capsules on L929-mouse-fibroblasts. Subsequently, capsules prepared of purified alginate with or without solved dexamethasone were implanted in the peritoneal cavity of rats and retrieved one month later for histological evaluation. Most of the capsules without dexamethasone proved to be overgrown and adherent to the abdominal organs whereas with co-encapsulated dexamethasone the majority of the capsules were found freely floating in the peritoneal cavity without overgrowth. We conclude that co-encapsulation of dexamethasone has a profound effect on fibroblasts and macrophages adherence to immunoisolating capsules. (C) 2004 Elsevier Ltd. All rights reserved
    corecore