36 research outputs found
The Effect of 45{\deg} Grain Boundaries and associated Fe particles on Jc and resistivity in Ba(Fe0.9Co0.1)2As2 Thin Films
The anisotropy of the critical current density Jc depends in general on both
the properties of the flux lines (such as line tension, coherence length and
penetration depth) and the properties of the defects (such as density, shape,
orientation etc.). Whereas the Jc anisotropy in microstructurally clean films
can be scaled to an effective magnetic field containing the Ginzburg-Landau
anisotropy term, it is in general not possible (or only in a limited field
range) for samples containing extended defects. Here, the Jc anisotropy of a
Co-doped BaFe2As2 sample with 45{\deg} [001] tilt grain boundaries (GBs), i.e.
grain boundaries created by 45{\deg} in-plane rotated grains, as well as
extended Fe particles is investigated. This microstructure leads to c-axis
correlated pinning, both due to the GBs and the Fe particles and manifests in a
c-axis peak in the Jc anisotropy at low magnetic fields and a deviation from
the anisotropic Ginzburg-Landau scaling at higher fields. Strong pinning at
ellipsoidal extended defects, i.e. the Fe particles, is discussed, and the full
Jc anisotropy is fitted successfully with the vortex path model. The results
are compared to a sample without GBs and Fe particles. 45{\deg} GBs seem to be
good pinning centers rather than detrimental to current flow.Comment: 8 pages, 7 figures, CEC-ICMC 2013 proceeding, accepted for
publication in Advances in Cryogenic Engineering (Materials
Scaling behaviour of the critical current in clean epitaxial Ba(Fe1-xCox)2As2 thin films
The angular-dependent critical current density, Jc(theta), and the upper
critical field, Hc2(theta), of epitaxial Ba(Fe1-xCox)2As2 thin films have been
investigated. No Jc(theta) peaks for H || c were observed regardless of
temperatures and magnetic fields. In contrast, Jc(theta) showed a broad maximum
at theta=90 degree, which arises from intrinsic pinning. All data except at
theta=90 degree can be scaled by the Blatter plot. Hc2(theta) near Tc follows
the anisotropic Ginzburg-Landau expression. The mass anisotropy increased from
1.5 to 2 with increasing temperature, which is an evidence for multi-band
superconductivity.Comment: Accepted in Physical Review B rapid communication
Influenced of Fe buffer thickness on the crystalline quality and the transport properties of Fe/Ba(Fe1-xCox)2As2 bilayers
The implementation of an Fe buffer layer is a promising way to obtain
epitaxial growth of Co-doped BaFe2As2 (Ba-122). However, the crystalline
quality and the superconducting properties of Co-doped Ba-122 are influenced by
the Fe buffer layer thickness, dFe. The well-textured growth of the Fe/Ba-122
bilayer with dFe = 15 nm results in a high Jc of 0.45 MAcm at 12 K in
self-field, whereas a low Jc value of 61000 Acm is recorded for the
bilayer with dFe = 4 nm at the corresponding reduced temperature due to the
presence of grain boundaries
DC superconducting quantum interference devices fabricated using bicrystal grain boundary junctions in Co-doped BaFe2As2 epitaxial films
DC superconducting quantum interference devices (dc-SQUIDs) were fabricated
in Co-doped BaFe2As2 epitaxial films on (La, Sr)(Al, Ta)O3 bicrystal substrates
with 30deg misorientation angles. The 18 x 8 micro-meter^2 SQUID loop with an
estimated inductance of 13 pH contained two 3 micro-meter wide grain boundary
junctions. The voltage-flux characteristics clearly exhibited periodic
modulations with deltaV = 1.4 micro-volt at 14 K, while the intrinsic flux
noise of dc-SQUIDs was 7.8 x 10^-5 fai0/Hz^1/2 above 20 Hz. The rather high
flux noise is mainly attributed to the small voltage modulation depth which
results from the superconductor-normal metal-superconductor junction nature of
the bicrystal grain boundary
Advantageous grain boundaries in iron pnictide superconductors
High critical temperature superconductors have zero power consumption and
could be used to produce ideal electric power lines. The principal obstacle in
fabricating superconducting wires and tapes is grain boundaries-the
misalignment of crystalline orientations at grain boundaries, which is
unavoidable for polycrystals, largely deteriorates critical current density.
Here, we report that High critical temperature iron pnictide superconductors
have advantages over cuprates with respect to these grain boundary issues. The
transport properties through well-defined bicrystal grain boundary junctions
with various misorientation angles (thetaGB) were systematically investigated
for cobalt-doped BaFe2As2 (BaFe2As2:Co) epitaxial films fabricated on bicrystal
substrates. The critical current density through bicrystal grain boundary
(JcBGB) remained high (> 1 MA/cm2) and nearly constant up to a critical angle
thetac of ~9o, which is substantially larger than the thetac of ~5o for YBCO.
Even at thetaGB > thetac, the decay of JcBGB was much smaller than that of
YBCO.Comment: to appear in Nature Communication
Celluphot: hybrid cellulose : bismuth oxybromide membrane for pollutant removal
The simultaneous removal of organic and inorganic pollutants from wastewater is a complex challenge and requires usually several sequential processes. Here, we demonstrate the fabrication of a hybrid material that can fulfill both tasks: i) the adsorption of metal ions due to the negative surface charge, and ii) photocatalytic decomposition of organic compounds. The bio-inorganic hybrid membrane consists of cellulose fibers to ensure mechanical stability and of Bi4O5Br2/BiOBr nanosheets. The composite is synthesized at low temperature of 115 °C directly on the cellulose membrane (CM) in order to maintain the carboxylic and hydroxyl groups on the surface that are responsible for the adsorption of metal ions. The composite can adsorb both Co(II) and Ni(II) ions and the kinetic study con-
firmed a good agreement of experimental data with the pseudo-second-order equation kinetic model. CM/Bi4O5Br2/BiOBrshowed higher affinity to Co(II) ions than to Ni(II) ions from diluted aqueous solutions. The bio-inorganic composite demonstrates a synergistic effect in the photocatalytic degradation of rhodamine B by exceeding the removal efficiency of single components. The fabrication of the biologic-inorganic interface was confirmed by various analytical techniques including SEM, STEM EDX mapping, XRD, and XPS. The presented approach for controlled formation of the bio-inorganic interface between natural material (cellulose) and nanoscopic inorganic materials of tailored morphology (Bi-O-Br system) enables the significant enhancement of materials functionality
Point-contact study of ReFeAs(1-x)Fx (Re=La, Sm) superconducting films
Point-contact (PC) Andreev-reflection (AR) measurements of the
superconducting gap in iron-oxipnictide ReFeAsO_{1-x}F_x (Re=La, Sm) films have
been carried out. The value of the gap is distributed in the range 2\Delta
\simeq 5-10 meV (for Re=Sm) with a maximum in the distribution around 6 meV.
Temperature dependence of the gap \Delta(T) can be fitted well by BCS curve
giving reduced gap ratio 2\Delta /kT_c^*\simeq 3.5 (here T_c^* is the critical
temperature from the BCS fit). At the same time, an expected second larger gap
feature was difficult to resolve distinctly on the AR spectra making
determination reliability of the second gap detection questionable. Possible
reasons for this and the origin of other features like clear-cut asymmetry in
the AR spectra and current regime in PCs are discussed.Comment: 6 two-column pages, 6 figs., 26 Refs., to be published in
Superconductor Science and Technolog
Thin Film Growth and Device Fabrication of Iron-Based Superconductors
Iron-based superconductors have received much attention as a new family of
high-temperature superconductors owing to their unique properties and distinct
differences from cuprates and conventional superconductors. This paper reviews
progress in thin film research on iron-based superconductors since their
discovery for each of five material systems with an emphasis on growth,
physical properties, device fabrication, and relevant bulk material properties.Comment: To appear in J. Phys. Soc. Jp