25 research outputs found

    Communication and visiting policies in Italian intensive care units during the first COVID-19 pandemic wave and lockdown: a nationwide survey

    Get PDF
    Background: During the first coronavirus disease 2019 (COVID-19) pandemic wave, an unprecedented number of patients with respiratory failure due to a new, highly contagious virus needed hospitalization and intensive care unit (ICU) admission. The aim of the present study was to describe the communication and visiting policies of Italian intensive care units (ICUs) during the first COVID-19 pandemic wave and national lockdown and compare these data with prepandemic conditions. Methods: A national web-based survey was conducted among 290 Italian hospitals. Each ICU (active between February 24 and May 31, 2020) was encouraged to complete an individual questionnaire inquiring the hospital/ICU structure/organization, communication/visiting habits and the role of clinical psychology prior to, and during the first COVID-19 pandemic wave. Results: Two hundred and nine ICUs from 154 hospitals (53% of the contacted hospitals) completed the survey (202 adult and 7 pediatric ICUs). Among adult ICUs, 60% were dedicated to COVID-19 patients, 21% were dedicated to patients without COVID-19 and 19% were dedicated to both categories (Mixed). A total of 11,102 adult patients were admitted to the participating ICUs during the study period and only approximately 6% of patients received at least one visit. Communication with family members was guaranteed daily through an increased use of electronic devices and was preferentially addressed to the same family member. Compared to the prepandemic period, clinical psychologists supported physicians more often regarding communication with family members. Fewer patients received at least one visit from family members in COVID and mixed-ICUs than in non-COVID ICUs, l (0 [0–6]%, 0 [0–4]% and 11 [2–25]%, respectively, p < 0.001). Habits of pediatric ICUs were less affected by the pandemic. Conclusions: Visiting policies of Italian ICUs dedicated to adult patients were markedly altered during the first COVID-19 wave. Remote communication was widely adopted as a surrogate for family meetings. New strategies to favor a family-centered approach during the current and future pandemics are warranted

    Psychobiological responses to stress in ageing.

    No full text

    Kompartmentmodel für 18F-Cholin.

    No full text
    Um die Effizienz und Sicherheit von dreidimensionalen, funktionellen Bildgebungsverfahren zu optimieren, soll die zeitlichen Variation von Aufnahme und Ausscheidung des Radiopharmazeutikums im Tumor sowie im gesunden Gewebe mit Hilfe von Kompartmentmodellen untersucht werden. Die nuklearmedizinische, diagnostische Anwendung, die in dieser Studie untersucht wurde, ist die Verabreichung von 18F-Cholin für die Suche nach Rezidiven oder Metastasen bei Prostatakrebspatienten. PET- und CT-Bilder wurden bis zu vier Stunden nach Injektion von 18F-Cholin aufgenommen. Zusätzlich wurden Blut und Urinproben gesammelt und in einem Gammacounter gemessen. Die Radioaktivitätskonzentrationen in verschiedenen Organen sowie die Blut- und Urindaten wurden benutzt, um ein Kompartmentmodel der Biokinetik des Radiopharmazeutikums aufzusetzen. Es besteht aus einem zentralen Kompartment (Blut) das in Austausch mit den anderen Organen steht. Die Struktur beschreibt die Leber, die Nieren, die Milz, das Blut und die Blase als separate Einheiten. Zusammen mit dem Model werden die individuellen biokinetischen Parameter sowie die der Population vorgestellt. Ein überarbeiteter Zeitplan für die Messung von Patienten wird vorgeschlagen

    Compartmental model of 18F-choline.

    No full text
      The MADEIRA Project (Minimizing Activity and Dose with Enhanced Image quality by Radiopharmaceutical Administrations), cofunded by the European Commission through EURATOM Seventh Framework Programme, aims to improve the efficacy and safety of 3D functional imaging by optimizing, among others, the knowledge of the temporal variation of the radiopharmaceuticals’ uptake in and clearance from tumor and healthy tissues. With the help of compartmental modeling it is intended to optimize the time schedule for data collection, thus contributing to reduce the radiation exposures of the patients. The model will also be adopted to evaluate the organ doses to the patients. Administration of 18F-choline to screen for recurrence or metastasis in prostate cancer patients is one of the diagnostic applications under consideration in the frame of the project. PET and CT images have been acquired up to four hours after injection of 18F-choline. Additionally blood and urine samples have been collected and measured in a gamma counter. The radioactivity concentration in different organs and data of plasma and urine clearance were used to set-up a compartmental model of the biokinetics of the radiopharmaceutical. It features a central compartment (blood) exchanging with organs. The structure describes explicitly liver, kidneys, spleen, plasma and bladder as separate units with a forcing function approach. The model is presented together with an evaluation of the individual and population kinetic parameters, and a revised time schedule for data collection is proposed. This optimized time schedule will be validated in a further set of patient studies

    Nonlinear compartmental model of <sup>18</sup>F-choline.

    No full text
    INTRODUCTION: This work develops a compartmental model of (18)F-choline in order to evaluate its biokinetics and so to describe the temporal variation of the radiopharmaceuticals&#39; uptake in and clearance from organs and tissues. METHODS: Ten patients were considered in this study. A commercially available tool for compartmental analysis (SAAM II) was used to model the values of activity concentrations in organs and tissues obtained from PET images or from measurements of collected blood and urine samples. RESULTS: A linear compartmental model of the biokinetics of the radiopharmaceutical was initially developed. It features a central compartment (blood) exchanging with organs. The structure describes explicitly liver, kidneys, spleen, blood and urinary excretion. The linear model tended to overestimate systematically the activity in the liver and in the kidney compartments in the first 20 min post-administration. A nonlinear process of kinetic saturation was considered, according to the typical Michaelis-Menten kinetics. Therefore nonlinear equations were added to describe the flux of (18)F-choline from blood to liver and from blood to kidneys. The nonlinear model showed a tendency for improvement in the description of the activity in liver and kidneys, but not for the urine. CONCLUSIONS: The simple linear model presented is not able to properly describe the biokinetics of (18)F-choline as measured in prostatic cancer patients. The introduction of nonlinear kinetics, although based on physiologically plausible assumptions, resulted in nonsignificant improvements of the model predictive power

    Compartmental model of &sup1;⁸F-choline.

    No full text
    The MADEIRA Project (Minimizing Activity and Dose with Enhanced Image quality by Radiopharmaceutical Administrations), aims to improve the efficacy and safety of 3D functional imaging by optimizing, among others, the knowledge of the temporal variation of the radiopharmaceuticals&#39; uptake in and clearance from tumor and healthy tissues. With the help of compartmental modeling it is intended to optimize the time schedule for data collection and improve the evaluation of the organ doses to the patients. Administration of 18F-choline to screen for recurrence or the occurrence of metastases in prostate cancer patients is one of the diagnostic applications under consideration in the frame of the project. PET and CT images have been acquired up to four hours after injection of 18F-choline. Additionally blood and urine samples have been collected and measured in a gamma counter. The radioactivity concentration in different organs and data of plasma clearance and elimination into urine were used to set-up a compartmental model of the biokinetics of the radiopharmaceutical. It features a central compartment (blood) exchanging with organs. The structure describes explicitly liver, kidneys, spleen, plasma and bladder as separate units with a forcing function approach. The model is presented together with an evaluation of the individual and population kinetic parameters, and a revised time schedule for data collection is proposed. This optimized time schedule will be validated in a further set of patient studies

    A compartmental model for biokinetics and dosimetry of <sup>18</sup>F-choline in prostate cancer patients.

    No full text
    PET with (18)F-choline ((18)F-FCH) is used in the diagnosis of prostate cancer and its recurrences. In this work, biodistribution data from a recent study conducted at Sk&aring;ne University Hospital Malm&ouml; were used for the development of a biokinetic and dosimetric model. METHODS: The biodistribution of (18)F-FCH was followed for 10 patients using PET up to 4 h after administration. Activity concentrations in blood and urine samples were also determined. A compartmental model structure was developed, and values of the model parameters were obtained for each single patient and for a reference patient using a population kinetic approach. Radiation doses to the organs were determined using computational (voxel) phantoms for the determination of the S factors. RESULTS: The model structure consists of a central exchange compartment (blood), 2 compartments each for the liver and kidneys, 1 for spleen, 1 for urinary bladder, and 1 generic compartment accounting for the remaining material. The model can successfully describe the individual patients&#39; data. The parameters showing the greatest interindividual variations are the blood volume (the clearance process is rapid, and early blood data are not available for several patients) and the transfer out from liver (the physical half-life of (18)F is too short to follow this long-term process with the necessary accuracy). The organs receiving the highest doses are the kidneys (reference patient, 0.079 mGy/MBq; individual values, 0.033-0.105 mGy/MBq) and the liver (reference patient, 0.062 mGy/MBq; individual values, 0.036-0.082 mGy/MBq). The dose to the urinary bladder wall of the reference patient varies between 0.017 and 0.030 mGy/MBq, depending on the assumptions on bladder voiding. CONCLUSION: The model gives a satisfactory description of the biodistribution of (18)F-FCH and realistic estimates of the radiation dose received by the patients
    corecore