68 research outputs found

    First Observation of Quantum Oscillations in the Ferromagnetic Superconductor UCoGe

    Full text link
    We succeeded in growing high quality single crystals of the ferromagnetic superconductor UCoGe and measured the magnetoresistance at fields up to 34T. The Shubnikov-de Haas signal was observed for the first time in a U-111 system (UTGe, UTSi, T: transition metal). A small pocket Fermi surface (F~1kT) with large cyclotron effective mass 25m0 was detected at high fields above 22T, implying that UCoGe is a low carrier system accompanyed with heavy quasi-particles. The observed frequency decreases with increasing fields, indicating that the volume of detected Fermi surface changes nonlinearly with field. The cyclotron mass also decreases, which is consistent with the decrease of the A coefficient of resistivity.Comment: 5 pages, 5 figures, accepted for publication in J. Phys. Soc. Jp

    High-field magnetization of the 3d heavy-fermion system LiV2_2O4−d_{4-d} (d = 0, 0.08)

    Full text link
    Metamagnetic behavior has been observed in LiV2O4 powder sample around 38 T at 4.2 K. On the other hand, magnetization for oxygen deficient LiV2O3.92 shows no indication of metamagnetism up to 40 T, and shows substantially reduced magnetic moment compared to that of LiV2O4. These results suggest that ferromagnetic interaction is strongly enhanced by magnetic fields in LiV2O4, whereas antiferromagnetic interaction is dominant in LiV2O3.92.Comment: 9 pages, 3 figures, to be published in J. Phys.: Condens. Matte

    Global update on the susceptibility of humam influenza viruses to neuraminidase inhibitors 2012-2013

    Get PDF
    Emergence of influenza viruses with reduced susceptibility to neuraminidase inhibitors (NAIs) is sporadic, often follows exposure to NAIs, but occasionally occurs in the absence of NAI pressure. The emergence and global spread in 2007/2008 of A(H1N1) influenza viruses showing clinical resistance to oseltamivir due to neuraminidase (NA) H275Y substitution, in the absence of drug pressure, warrants continued vigilance and monitoring for similar viruses. Four World Health Organization (WHO) Collaborating Centres for Reference and Research on Influenza and one WHO Collaborating Centre for the Surveillance, Epidemiology and Control of Influenza (WHO CCs) tested 11,387 viruses collected by WHO-recognized National Influenza Centres (NIC) between May 2012 and May 2013 to determine 50% inhibitory concentration (IC50) data for oseltamivir, zanamivir, peramivir and laninamivir. The data were evaluated using normalized IC50 fold-changes rather than raw IC50 data. Nearly 90% of the 11,387 viruses were from three WHO regions: Western Pacific, the Americas and Europe. Only 0.2% (n=27) showed highly reduced inhibition (HRI) against at least one of the four NAIs, usually oseltamivir, while 0.3% (n=39) showed reduced inhibition (RI). NA sequence data, available from the WHO CCs and from sequence databases (n=3661), were screened for amino acid substitutions associated with reduced NAI susceptibility. Those showing HRI were A(H1N1)pdm09 with NA H275Y (n=18), A(H3N2) with NA E119V (n=3) or NA R292K (n=1) and B/Victoria-lineage with NA H273Y (n=2); amino acid position numbering is A subtype and B type specific. Overall, approximately 99% of circulating viruses tested during the 2012-2013 period were sensitive to all four NAIs. Consequently, these drugs remain an appropriate choice for the treatment and prophylaxis of influenza virus infections

    Molecular Evolutionary Analysis of the Influenza A(H1N1)pdm, May–September, 2009: Temporal and Spatial Spreading Profile of the Viruses in Japan

    Get PDF
    BACKGROUND: In March 2009, pandemic influenza A(H1N1) (A(H1N1)pdm) emerged in Mexico and the United States. In Japan, since the first outbreak of A(H1N1)pdm in Osaka and Hyogo Prefectures occurred in the middle of May 2009, the virus had spread over 16 of 47 prefectures as of June 4, 2009. METHODS/PRINCIPAL FINDINGS: We analyzed all-segment concatenated genome sequences of 75 isolates of A(H1N1)pdm viruses in Japan, and compared them with 163 full-genome sequences in the world. Two analyzing methods, distance-based and Bayesian coalescent MCMC inferences were adopted to elucidate an evolutionary relationship of the viruses in the world and Japan. Regardless of the method, the viruses in the world were classified into four distinct clusters with a few exceptions. Cluster 1 was originated earlier than cluster 2, while cluster 2 was more widely spread around the world. The other two clusters (clusters 1.2 and 1.3) were suggested to be distinct reassortants with different types of segment assortments. The viruses in Japan seemed to be a multiple origin, which were derived from approximately 28 transported cases. Twelve cases were associated with monophyletic groups consisting of Japanese viruses, which were referred to as micro-clade. While most of the micro-clades belonged to the cluster 2, the clade of the first cases of infection in Japan originated from cluster 1.2. Micro-clades of Osaka/Kobe and the Fukuoka cases, both of which were school-wide outbreaks, were eradicated. Time of most recent common ancestor (tMRCA) for each micro-clade demonstrated that some distinct viruses were transmitted in Japan between late May and early June, 2009, and appeared to spread nation-wide throughout summer. CONCLUSIONS: Our results suggest that many viruses were transmitted from abroad in late May 2009 irrespective of preventive actions against the pandemic influenza, and that the influenza A(H1N1)pdm had become a pandemic stage in June 2009 in Japan
    • …
    corecore