1,600 research outputs found

    Symmetric Linear Backlund Transformation for Discrete BKP and DKP equation

    Full text link
    Proper lattices for the discrete BKP and the discrete DKP equaitons are determined. Linear B\"acklund transformation equations for the discrete BKP and the DKP equations are constructed, which possesses the lattice symmetries and generate auto-B\"acklund transformationsComment: 18 pages,3 figure

    Introduction to Configuration Path Integral Monte Carlo

    Full text link
    In low-temperature high-density plasmas quantum effects of the electrons are becoming increasingly important. This requires the development of new theoretical and computational tools. Quantum Monte Carlo methods are among the most successful approaches to first-principle simulations of many-body quantum systems. In this chapter we present a recently developed method---the configuration path integral Monte Carlo (CPIMC) method for moderately coupled, highly degenerate fermions at finite temperatures. It is based on the second quantization representation of the NN-particle density operator in a basis of (anti-)symmetrized NN-particle states (configurations of occupation numbers) and allows to tread arbitrary pair interactions in a continuous space. We give a detailed description of the method and discuss the application to electrons or, more generally, Coulomb-interacting fermions. As a test case we consider a few quantum particles in a one-dimensional harmonic trap. Depending on the coupling parameter (ratio of the interaction energy to kinetic energy), the method strongly reduces the sign problem as compared to direct path integral Monte Carlo (DPIMC) simulations in the regime of strong degeneracy which is of particular importance for dense matter in laser plasmas or compact stars. In order to provide a self-contained introduction, the chapter includes a short introduction to Metropolis Monte Carlo methods and the second quantization of quantum mechanics.Comment: chapter in book "Introduction to Complex Plasmas: Scientific Challenges and Technological Opportunities", Michael Bonitz, K. Becker, J. Lopez and H. Thomsen (Eds.) Springer Series "Atomic, Optical and Plasma Physics", vol. 82, Springer 2014, pp. 153-194 ISBN: 978-3-319-05436-0 (Print) 978-3-319-05437-7 (Online

    Telescoping Solar Array Concept for Achieving High Packaging Efficiency

    Get PDF
    Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared

    Drip and Mate Operations Acting in Test Tube Systems and Tissue-like P systems

    Full text link
    The operations drip and mate considered in (mem)brane computing resemble the operations cut and recombination well known from DNA computing. We here consider sets of vesicles with multisets of objects on their outside membrane interacting by drip and mate in two different setups: in test tube systems, the vesicles may pass from one tube to another one provided they fulfill specific constraints; in tissue-like P systems, the vesicles are immediately passed to specified cells after having undergone a drip or mate operation. In both variants, computational completeness can be obtained, yet with different constraints for the drip and mate operations

    Independent Submission S. Vinapamula Request for Comments: 7767 Juniper Networks Category: Informational

    Get PDF
    Abstract This document specifies a mechanism for a host to indicate via the Port Control Protocol (PCP) which connections should be protected against network failures. These connections will then be subject to high-availability mechanisms enabled on the network side. This approach assumes that applications and/or users have more visibility about sensitive connections than any heuristic that can be enabled on the network side to guess which connections should be check-pointed

    Evaluating Management Decisions to Reduce Environmental Risk of Roadside-Applied Herbicides

    Full text link
    Management decisions concerning the spraying of herbicides on highway roadsides are evaluated on the basis of their impact on resulting environmental risk. A mathematical transport model was previously applied to the State of California with a Monte Carlo technique, and in this study the results are manipulated to evaluate the risk reduction that results from restricting herbicide application on the basis of site characteristics or changing other application practices. Results show that eliminating herbicide applications where the slope of the grass adjacent to the highway is greater than 30° has little or no effect on risk. Eliminating application where the width of the grass adjacent to the highway is less than 2 m or where soil organic carbon content is less than 0.5% can lead to significant reductions in environmental risk for certain herbicides. Additionally, limiting the width of the spray zone and applying the minimum manufacturer-suggested application rate reduce the risk to aquatic ecosystems. Applying at the minimum rate has the greatest potential to decrease risk. Results of this study show that management decisions can have a significant effect on limiting herbicide runoff risks to aquatic ecosystems. Decision makers would have to weigh costs of alternatives to herbicide spraying for controlling roadside vegetation against the environmental risk reductions

    o.OM: Structured-Functional Communication between Computer Music Systems using OSC and Odot

    Get PDF
    International audienceO.—odot—is a portable media programming framework based on the OSC data encoding. It embeds a small expression language which allows writing and executing programs in OSC structures. The integration of programming and declarative functional descriptions within data transfer protocols enables structured and expressive communication in media systems: program snippets can be distributed in OSC messages, which evaluate to further OSC messages in the different communicating software. We present experiments using this framework in the OpenMusic computer-aided composition environment , and illustrate via case studies some advantages of such integrated system

    The Pioneer Anomaly

    Get PDF
    Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of the Newton's gravitational inverse-square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living Reviews in Relativit

    Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph

    Full text link
    Recent tests of a single module of the Jagiellonian Positron Emission Tomography system (J-PET) consisting of 30 cm long plastic scintillator strips have proven its applicability for the detection of annihilation quanta (0.511 MeV) with a coincidence resolving time (CRT) of 0.266 ns. The achieved resolution is almost by a factor of two better with respect to the current TOF-PET detectors and it can still be improved since, as it is shown in this article, the intrinsic limit of time resolution for the determination of time of the interaction of 0.511 MeV gamma quanta in plastic scintillators is much lower. As the major point of the article, a method allowing to record timestamps of several photons, at two ends of the scintillator strip, by means of matrix of silicon photomultipliers (SiPM) is introduced. As a result of simulations, conducted with the number of SiPM varying from 4 to 42, it is shown that the improvement of timing resolution saturates with the growing number of photomultipliers, and that the 2 x 5 configuration at two ends allowing to read twenty timestamps, constitutes an optimal solution. The conducted simulations accounted for the emission time distribution, photon transport and absorption inside the scintillator, as well as quantum efficiency and transit time spread of photosensors, and were checked based on the experimental results. Application of the 2 x 5 matrix of SiPM allows for achieving the coincidence resolving time in positron emission tomography of \approx 0.170 ns for 15 cm axial field-of-view (AFOV) and \approx 0.365 ns for 100 cm AFOV. The results open perspectives for construction of a cost-effective TOF-PET scanner with significantly better TOF resolution and larger AFOV with respect to the current TOF-PET modalities.Comment: To be published in Phys. Med. Biol. (26 pages, 17 figures
    corecore